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Introduction

“Listen,” he said. It was an invitation, not a command.

The storyteller dropped his voice a little below its usual quiet 
calm. Without even realizing it, we all leaned in a bit more to 
make sure we could hear. 

This was going to be another classic.  It would be one of those 
tales of puzzle and personality; a story that would have a solid 
moral if we could dig deep enough. The tale would save us from 
some weakness or mistake of our own if we could just listen 
closely enough, and learn from the follies and misadventures of 
others.

I have come to believe that all professions share these nuggets 
of wisdom, passed from generation to generation. They are part 
myth, part fact, and a bit of fancy, all woven together in sturdy 
tapestry by the wisdom and experience of the teller. 

We laugh at the humanity, recognize our own traits in the stories, 
and carry them with us to each new job. Sharing the stories and 
jokes, we spread them like a virus, mutating and molding them 
to the new audience. 

Always there is at the heart of each story some inner meaning, 
some lesson or moral that we might not even recognize in the 
laughter and delight of the story itself. But eventually (hopefully) 
the wisdom of the tale leaks into our own efforts. If experience 
is what we get just after we needed it, then these stories “pay 
it forward,” giving us the benefit of somebody else’s experience, 
without all of the pain.

Someone once told me that a parable is an earthly story with a 
heavenly meaning. It is from that idea that I have come to refer 
to these tales as parables in problem solving.

This kind of spirit and passion (or is it an affliction?) infuses 
certain practitioners of any profession or hobby. 
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Because I am condemned to a lifelong love of things electrical 
and electronic, that is where many of my stories live. But if you 
are quiet and contemplate the stories for a while, you may find 
echoes of your own particular passion in these little mysteries, 
comedies, and tragedies.  There may be a moral in here that 
resonates with your spirit. I hope that you will be as fortunate 
as I have been to have heard and learned from some of these 
storytellers. 

“Listen…”

Executive Summary
I once had a boss who found my emails to be long and detailed. 
Perhaps they were even painful.  He requested that I put an 
executive summary at the beginning of any long emails. 

He did not want to wade through all the details just to know 
whether he needed to take an immediate action. 

This was a very good idea. It forced me to think hard about the 
shortest possible message I needed to convey and to quickly 
discuss the main point I needed to communicate.

So here is the short story: I want you to master a basic problem-
solving method, which could also be called “the five questions”:

1.	 What do you know? (Describe the problem.)
2.	 What are the rules? (Know the basic science behind the 

system.)
3.	 What don’t you know? (Outline the missing 

information.)
4.	 How can you find out the stuff you don’t know? (Do 

research and experiments.)
5.	 How do you know when you are ready to solve; or have 

already solved the problem? (Evaluate and verify your 
solution.)

Wow. That looks pretty basic, eh? If you are an engineer, you 
have already gone through at least four years of education doing 
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these same steps over and over again. If you are an engineering 
student, you are in the middle of a lot of classes covering these 
same techniques.  The names of the variables and constants 
change, but the methods are pretty consistent.  For lots of 
engineering and science problems, you are really just writing 
down equations (rules) that you have learned, filling in the 
constants and variables (stuff you know) then doing the math to 
solve for an unknown quantity (stuff you don’t know).

Design is very much a human activity. Like all human activities 
the process is subject to error.  When we design systems, we 
are solving problems and also creating new problems.  Some 
problems will be the result of old mistakes that have been made 
before, while other problems will be new. 

Even very good designs might have components that eventually 
fail. This creates new problems that we should solve.

The key idea you need to take from here is that debugging (or 
troubleshooting, or “fixing stuff,” or whatever you want to call 
problem-solving) is an intrinsic part of the design process.

When I was managing an electronic hardware design team, I told 
them I wanted the team to make lots of mistakes, but I wanted 
them to make those mistakes quickly. Then I added that I wanted 
those engineers to find the mistakes and fix them—faster.

Asking the five questions is great for solving technical problems. 
It works extremely well on complex systems of machinery and 
electronics.  This method can produce spectacular success in 
diagnosing the most subtle bugs in computerized (virtual plus 
physical) systems that confound many projects.  Occasionally, 
these methods can be used to diagnose very difficult health care 
issues. 

(Disclaimer: Unfortunately, these methods become unreliable in 
dealing with human type “people” problems. Sorry about that 
boss. Nothing in this world is “one-size-fits-all.”)

If you are a non-technical manager, you might not have enough 
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time (or enough interest) in all the details to read this entire 
book. Let me save you some time and effort.

You could possibly get maximum entertainment and minimum 
learning by reading this executive summary, then skimming 
through the remainder of the book. 

If nothing else, please read chapters 1, 12, and 18-24 to get the 
central story. Also, as you flip through, look for the universal 
Fast Forward symbol:8 . This symbol is there to help you know 
to stop scanning.

Most of the stories that follow this symbol start with the words 
“once upon a time" (although this first joke does not.)

8 There is an old military joke: what is the difference between 
a fairy tale and a war story?

A fairy tale starts with “Once upon a time…”

A war story starts with “Now this ain’t no shit son, I was there, 
and I saw it myself…”

What is this book really about? 
This book is about solving problems in complex technical systems. 
This is not a book about “issues.” It seems that somewhere in 
the past few decades, it became popular management-speak to 
talk about “issues” instead of “problems.” Apparently “issues” 
are not something negative, just something we have to resolve, 
whereas “problems” imply that we made some mistakes and 
might get fired. So somebody toned down the language to keep 
upper layers of management calm.

That seems crazy to me.  Products and new designs have 
problems. Engineers fix problems.  So for the purposes of this 
book, I will talk about problems and problem solving. I will not 
talk about “issues.”

One of the ways you can learn to solve problems is by listening 
to other people share stories of how a problem was solved in the 
past. These stories are best when they are short, include some 
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important details, and end up teaching you something general 
about problem solving that you can use in the future.  These 
stories are even better if they have some drama or they make 
you laugh. Sometimes such stories make you laugh nervously 
because you can recognize yourself in them. 

Another way we learn to solve problems is by applying a process 
or method such as our five questions.  This book has four basic 
sections.

In the first section, I will confront the question of how to describe 
and document a problem. For some problems, you only need a 
clear description to understand what needs to be fixed. In short, 
you try to answer the three questions “What do you know?”, 
“What are the Rules?” and “What Don’t You Know?”

In the second section, you will think about how to find out the 
stuff you don’t know—also known as debugging, experimenting, 
or researching. This can take a lot of time and demands great 
patience. You probably are already sure you know how to do this 
part. You are wrong. Like everybody, you take shortcuts, and 
the more complex the problem, the worse the results when you 
cheat.

Even if you already have some good thoughts about how to go 
about doing debug or experiments or research, you probably 
still cheat a little by not doing them in an organized and clearly 
documented way. 

Debugging is like playing golf or having sex. Everybody 
does it wrong sometimes; some folks lie and some folks 
cheat. Few are as good as they think they are, and we all 
look ridiculous doing it.
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There are some differences between debugging new 
systems and troubleshooting existing (previously 
working) systems. There is a lot to talk about here and 
we will return to this topic later.

In the third section, you get to the good stuff and maybe even 
solve some problems. There is a villain lurking in the shadows 
here, and sometimes he looks just like the hero of your story. 
In fact, the villain and the hero look just like you and me. The 
villain constantly leaps to cause in a single bound; the hero gets 
there only when the time is right. The villain runs away based on 
flimsy evidence; the hero goes back to the beginning and proves 
his conclusion both backward and forward. 

There are giant craters in your Yellow Brick Road. You 
are going to need help from lots of other people to get to 
good solutions. You will need some inspiration to get to 
brilliant solutions.

In the fourth section, you will reflect on what you have learned. 
You get to look back and add some perspective to the business of 
problem solving. Maybe you can even learn something about the 
business of business.

As I’ve said, a parable can be seen as an earthly story with a 
heavenly meaning.  I have always liked that description, but I 
will warn you that the parables you find here are more like just 
a hell of a story—and some of them might even be true.

No, wait. Only pieces of some stories might be true. All of the 
names have been changed to protect both the innocent and the 
guilty. Facts might be swapped between stories to make them 
more readable or understandable.  Maybe I made stuff up in 
some places.  The idea is for these parables to serve as conduits 
to your understanding of problem solving.

One more thing: I will apologize to all of you in advance. 
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Sometimes in my enthusiasm to make a point, I fall into rather 
crude or exaggerated words. My editors might suggest gentler 
words or tactics to obscure profanity. But sometimes, one just 
needs to use the full range of a rich and emotional vocabulary to 
get the appropriate emphasis. 

Sorry about that.

Why should you learn these methods? Why is this 
important?
Let’s do a simple exercise. 

Stand up, and raise your hand if you think there is a risk that we 
will ever run out of problems to solve. 

Hands up! Anybody? Anybody?

But why don’t we run out of problems? Shouldn’t this stuff get 
easier and easier until we can do it all with unskilled labor or 
machines? 

No, I don’t think so. As long as there are end-users, customers, 
salesmen, bosses, or humans, we will always have somebody 
who wants a product or service to be one or all of the following:

●● Easier to use
●● Cheaper
●● Smarter
●● Faster
●● Smaller
●● Lighter
●● Less expensive
●● Cheaper
●● Cheaper
●● Cheaper … and better!

This means that you have two kinds of problems to solve for 
any project.  The first are the problems posed by the project 
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specification: you need to make the system/product cheaper or 
better in some way. The second kind of problem in every project 
are the mistakes or limitations that you introduce when solving 
the first kind of problem. Think about it this way: If debugging 
is the process of removing errors from a design, then designing 
must be the process of putting errors into a design!

One thing this means is you need better testing to uncover 
problems.  Becoming a better tester helps make you a better 
debugger, and understanding what makes you a better debugger 
helps make you a better designer.  You will always make 
mistakes, but hopefully you will fix them before your customer 
can see them.

Why Should I Listen To You Bob? You ask, “What Do 
You know about My Special Skills?”
That is a good question. I very well might be the dumbest guy in 
the room. I assuredly don’t know much about whatever specialty 
skills you have.  Yes, I have done a lot of electronic system 
designs over that past 40 years, but there is no assurance that 
any specific debug experience would match some problem you 
have today.

I started doing electronics design in high school.  Nearly 
everything I built for several years did not work very well, if at 
all. But I learned to study my mistakes and failures. Once I got 
the hang of it, I found that the differences between the successes 
and failures usually involved some really small details.

I spent a lot of time designing industrial single-board-computers 
and way too much time writing code in assembly language.  At 
one time, I was in a group of engineers designing DVD players 
at a consumer electronics company.  I then moved to a group 
designing satellite set-top-box receivers. There were two of us 
named “Bob” in that particular group and we sat next to each 
other. Having two Bob’s led to occasional confusion over who was 
being referenced in a conversation or meeting. Soon I became 
known as “Audio Bob” and the other fellow was dubbed “Video 
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Bob” due to the skill areas we were covering at that time. 

I have also been “HDD-Bob” (hard-disk-drive), and “Manager-
Bob” and many other “Bobs” in my career. I have owned and run 
several businesses. It is likely that none of these things qualifies 
me to work on your projects.

But I have spent a lot of years listening to really smart people 
tell their stories and explain how they solved problems. I have 
also solved some difficult problems by myself and in large global 
teams. Over time, I have become convinced that there are some 
really simple, basic ideas that make all the difference between 
rapid, successful debugging and disastrously slow or failed 
debugging. I want to share these simple concepts with you and I 
really hope they help you.

This book talks about solving problems as an intrinsic part of 
the design process.  Occasionally, I use the word “fix” instead 
of “solve.” The word “fix” has an implied meaning of repair or 
service. Some folks might see this as somehow less noble than 
problem solving, debugging, or troubleshooting. 

For these people, the word “fix” pulls up an image of a plumber 
instead of, say, a fluid dynamics expert. Nothing could be further 
from the truth. In this book, fixing a problem is assumed to be 
the same as solving, diagnosing, implementing, or any other 
high-brow words you might choose.

If you have perused the table of contents of this book, you 
have probably noticed that there are several chapters about 
communicating.  No doubt, you are probably wondering why.

Let me answer that with an appropriate joke: How can you 
identify an extroverted engineer?

He is the one who stares at your shoes while talking to you.

Engineers and scientists are distributed all along the autism 
to normal spectrum, but there is some kernel of truth in the 
stereotype of the nerdy, introverted, highly focused and slightly 
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anti-social geek.  Truly extroverted engineers might end up 
in management or sales, simply because they can overcome 
the communication barriers that would otherwise keep them 
confined to purely technical pursuits.

For that reason, much of this book talks about communication. 
Just as I have listed five Questions as summarizing the method 
in this book, we could talk about the five C-words of a successful 
debug:

1.	 Communication
2.	 Contemplation
3.	 Concentration
4.	 Confirmation
5.	 Communication

Hey wait a minute, isn’t “communication” in there twice? Yes 
it is—and for good reason. A good solution to a problem always 
begins and ends with clear communication.

Let’s dive in.

A Really Simple Problem Solving Method

1.	 What do you know? (Describe the problem.)

2.	 What are the rules? (Know the basic science behind the 
system.)

3.	 What don’t you know? (Outline the missing information.)

4.	 How can you find out the stuff you don’t know? (Do 
research and experiments.)

5.	 How do you know when you are ready to solve; or have 
already solved the problem? (Evaluate and verify your 
solution.)
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The Dog Barks When the Phone Rings 
The phone jangled in the sleepy Kansas garage.  For some 
reason, telephone-company repair shops have always been called 
“garages.” Yes, the well-stocked trucks came and went from this 
place, but in truth it looked more like any small office, perhaps 
just a little more organized. Joe liked to keep the desks clear and 
the files in order. 

It just made things a bit smoother when an all-out battle ensued. 
Like last month when they had called in all hands to recover 
from the twister damage near Lawrence, restringing and tracing 
circuits around the clock. Joe felt good that his crews had been 
so cheerful and efficient. People depend on their phone service 
and Joe’s guys were the best. 

The phone jangled a second time as Joe lifted it from the cradle. 

“Repair service! How may I help you?” Joe nearly sang his 
standard greeting. 

“Yes sir. I need you to come fix my phone.” The customer’s voice 
was clear but somewhat thin. Joe concluded she wasn’t a very 
young lady, but not elderly to the point of infirm. He liked to 
try to guess what the callers looked like from the sound of their 
voices.  It was the same mental quirk that made him work so 
hard on how he sounded on the phone. 

Joe began the standard litany: 

“Are you calling from the phone that has the problem?” 

“Yes,” she replied. 

“And have you been able to receive calls from the outside?” 

“Oh yes!” she answered without hesitation. 

Joe wrinkled his nose.  This wasn’t going down the normal 
diagnostic path.  Calls going-out are okay, calls coming-in are 
okay, and he could tell the connection sounded pretty good. 

“What seems to be the problem, ma’am?” Joe asked. 
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“My dog barks when the phone rings,” she replied. 

Joe’s mouth opened and closed soundlessly three times.  The 
fish–out–of–water act finally ended when he composed himself 
and bought a little time with the standard “Excuse me, I didn’t 
quite hear you” line. But he had heard her all too well. 

“My dog barks when the phone rings,” she said. 

“Yes ma’am.  I’m sorry, this is telephone service.  Perhaps you 
need to call a veterinarian.” Joe was smiling now.  He could 
safely park this one in the category of those confused folks who 
wanted Telco repair to fix the refrigerator or the TV or some 
other “e-lektrick” thing. 

“No sir. This is definitely your problem. I want you to come fix 
the phone.” She was surprisingly firm and didn’t seem confused. 
Joe tried again. 

“Maybe your dog just doesn’t like the sound of the phone. If you 
turn the phone over, there is a little silver wheel on the bottom 
that will make the ringer bell much quieter if you turn it all the 
way to the other end.” 

“No sir. My dog is outside. If I let him in the house, he doesn’t 
bark when the phone rings. He just runs behind the sofa and 
stays there.  I want you to come fix the phone.” She sounded 
insistent. Joe paused to collect his thoughts. He didn’t want to 
insult her, but she was obviously terribly confused. 

“Ma’am, I’m sorry. We can only fix the telephone. You said that 
you can place calls and receive calls and the line quality sounds 
pretty good. I don’t see what we can do for you.” 

She firmly replied, “The dog barks when the phone rings. Ever 
since you people put that new extension in my bedroom last 
week, he kicks up a terrible fuss when my friends call me. I want 
you to come fix my phone.” 

The hairs on the back of Joe’s neck stood on end. He was ready to 
fight, wanted to tell this lady to kindly go stick it, but something 
was nagging at the back of his mind. His predecessor Fred had 
always run Joe through a quick checklist: 
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1. Did it ever work before? 
2. What changed? 

Joe was always surprised at how quickly this helped sort 
problems. But it didn’t really fit here, since nothing was actually 
broken! There was something in her voice though, and something 
tickling inside his brain. But he couldn’t put his finger on it. 

Sighing deeply, Joe asked the insistent customer, “What is your 
address?” It turned out to be fairly close to the garage. 

“I can come out at noon.” He wouldn’t dare send one of his guys 
on this one. They would never let him hear the end of it if he 
asked them to go fix a dog—a real dog, not a difficult problem. 
(Technical folks sometimes call tough problems “dogs.”) 

“Thank you,” she said. As they both hung up their phones, he 
couldn’t believe he had gotten himself talked into this one. 

The rest of the morning was a blur. Joe’s assistant covered the 
phones while Joe checked the service records for his dog-bark 
customer. Nothing unusual there, although he was able to see 
that she had indeed had a new jack put into a bedroom the 
previous week. 

When lunch time rolled around, Joe was rolling up to the 
customer’s house. A nice, modest, ranch-style home, it looked 
well maintained. There was a small front yard and a fairly large 
backyard with no fence either front or back. 

A sturdy woman of about 50 (Joe couldn’t help but smile; he 
had gotten that part right) answered his ring of the doorbell. 
After introductions and a few brief pleasantries, she showed him 
the main kitchen phone and then led him to the new extension 
phone in the back bedroom. 

From there, he could see out a window into the backyard.  A 
medium-size dog was leashed to a dog-run cable that ran from 
the back of the house to a large maple tree that graced the rear 
yard. A nicely painted dog house and a bowl of water sat under 
the tree.  The customer told him that the dog was a Humane 
Society adoption, mostly collie, but some other breed mixed in 
as well. 
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Joe dialed a special number for an automatic central office 
callback.  He re-cradled the handset and waited.  On the first 
ring, the circus began. The dog appeared to be making a serious 
attempt at powered flight. Yelping and barking and twisting, it 
cleared a good 36 inches between itself and the ground before 
gravity won the battle.  The second ring induced a leap and 
barking fit that made the first appear small. A thin trail of urine 
appeared to follow the poor creature’s arc through the air like 
some perverse fountain statuary. 

Joe shook off his astonishment long enough to slam down the 
handset and stop the rings. The dog continued its plaintive yelps 
for several minutes. 

“You see,” the customer repeated.  “The dog barks when the 
phone rings.” 

Joe saw all right, and now he was pretty sure he knew what the 
problem was. He went out the back door of the house and checked 
the dog-run wire. As he expected, it was a length of aluminum 
aircraft-control cable, joined neatly at each end to an eye hook. 
At the house end, the eye hook was screwed deep into the clean 
siding. Joe walked up and tapped the siding. “Aluminum siding,” 
he said to no one in particular. 

Now he was sure he knew what was happening.  He walked 
around the back of the house, pausing to fidget for a moment 
at one place near the back bedroom window. He returned to the 
customer, explained to her that he had fixed the phone and the 
dog should not bark when the phone rings in the future.  A quick 
re-test confirmed his statement.

When Joe returned to the garage, he related his newest parable 
to all the repairmen.  He told them that his repair had only 
required a bit of electrical tape and some non-conductive goop.

The conclusion to his story went something like this: 

When the new extension phone was installed, the new wire was 
simply run along the back of the house where it went into the 
bedroom through a small hole drilled in the exterior siding. To 
keep the wire straight and neat, it had been stapled in place at 
several points along the outside back wall. But the sharp edge of 
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one of the staples had nicked the telephone wire insulation, and 
that wire was therefore shorted to the aluminum siding. 

The conductive metal siding was shorted to the dog-run cable, 
which in turn connected directly through the dog’s chain to his 
metal-studded collar. The dog was of course grounded. 

When the phone rang, the 90-volt ringing energy was being 
routed right through his poor little body, including any part 
touching the ground! Wouldn’t you bark too if that happened to 
you?
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What Do You Know?

The phone rings at your desk. A person at the other end says, “It 
does not work.” You say, “What do you mean, it does not work?” 
They reply with something utterly uninformative, such as, “I 
mean it is broken. It does not work.”

I have seen and heard written and verbal exchanges go on like 
this for days or even weeks. Such conversations would actually 
be funny if they were not so frustrating, stupid, anger-inducing, 
wasteful, and oh, did I mention stupid? (Important note here: 
It is not the people who are stupid. In fact, I find this happens 
far more with very smart people. It is the conversation that is 
stupid. Somehow, these very smart people get locked into goofy 
word exchanges that contain no useful information!)

Let’s break it down. The first word in the statement “It does not 
work” is the word “it.” You don’t know what “it” might be from 
that sentence. Of course, from the point of view of the complainer, 
the “it” is obvious. “It” could only refer to the last thing on which 
the complainer was working. “It” is very fresh in this person’s 
mind. He wonders how stupid the person he is talking to could 
possibly be if that person does not understand what “it” is. He 
might think, “There is only one thing that is shared between 
the two of us, and that is the project that includes ‘it.’” The 
complainant simply cannot conceive that you don’t already know 
what he is talking about.

The next words, “does not,” are usually straightforward. That 
phrase expresses an active negative behavior. Fred does not go 
to the grocery store. The car does not start. This painting does 
not look realistic.

Every one of these preceding statements is more useful than the 
complainant’s, however, because they include two additional 
facts. First, they identify a specific entity (Fred, car, painting) 
instead of an ambiguous “it.” Second, they state a much clearer 
action than just “work” (go to the grocery store, start, look 
realistic). So you have already found two problems in the original 
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four-word statement. The only thing you clearly understand up 
to this point is “does not.”

Eventually, however, you realize that even these slightly better 
short statements leave out a lot of information. Fred may not go 
to the grocery store during the week, but does he go on weekends? 
Or does he never go to the grocery store? When one says that the 
car does not start, does this mean that the starter motor does 
not try to spin the engine, or does it mean that the starter motor 
actually spins the engine but that the engine does not fire and 
stops spinning as soon as the starting key is released?

I could go through endless examples to illustrate, but let me get 
to the point. A good statement of a problem, or problem statement 
will address all of the following:

●● What?
●● Which?
●● How many?
●● When?
●● Where?
●● Who?
●● How?

Let’s talk about these in order. Every one of these questions is 
critical to our method of problem solving. Some of them might 
even seem obvious when presented in a nice, neat order like 
this.  You will rarely receive all of the answers to these questions 
in the initial contact about a problem, however. An extremely 
mature development organization will incorporate these steps 
into their problem-solving process, but for most companies, you 
will be lucky to receive more than a few of these facts.

What?
In the contact described previously, the “what” was represented 
by a completely ambiguous word: “it.” No matter how painful 
or how tiresome you find the exchange, you absolutely must 
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force the person reporting the problem to clearly identify the 
“what” of the problem.  In the case of a released product, you 
need a model name or number and a part number. Model names 
tend to identify a general type of product (Ford Mustang, Apple 
iPad), but they do not identify a particular model year, revision, 
production lot, date code, or other information. For these things, 
you often need a specific model part number, a serial number, 
or both.

Well run organizations have methods in place to identify and 
track these things. Badly run organizations do not have such 
methods and might not even understand why such identification 
and tracking is important.

Which?
During development, many organizations use different names 
to identify product samples that come from various steps in the 
development process.  In some companies, part numbers are 
assigned that use digits to indicate development versions and 
letters to indicate production versions after the product has been 
released. 

For example, the power delivery assembly (PDA) of a Ferndoggle 
500 might carry a part number of 1234567-001, -002, or -003 for 
early development samples. The production (released) versions 
might be 1234567-A, 1234567-B, or 1234567-C. Assuming these 
PDAs are marked with their part number, a person trying to 
report a problem with a Ferndoggle 500 will be able to instantly 
tell you enough information for you to know whether that person 
is working on a development or production sample and which 
version he is using.

Accurate software version labelling is equally important to  
letting you understand which system you are debugging.
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There are many ways for parts to be marked with 
identifiers.  Part markings can be placed on physical 
labels (paper, plastic, metal, cloth), which are attached 
to the part or assembly. Part markings can also be made 
with ink stamps. Those inks can be dye or pigment based. 
Metal components might use an embossed or stamped 
(impact displacement or indenting of a small part of the 
metal surface) part marking.  Plastic parts or molded 
metal parts can carry markings from the mold tool on 
production parts.

Parts that are very small often carry no marking at all.  In 
this instance, the production process must be extremely well 
controlled to ensure that the wrong part is never used. Otherwise, 
there is no simple method to determine that the correct part has 
been used in a given sample. You could remove and measure the 
physical performance of every component in an assembly, but 
that is extremely time-consuming and inefficient. 

Imagine the pain of removing 600 capacitors and 300 resistors 
from a circuit-board sample and then measuring the basic 
performance of each part to try to find which component position 
was loaded with an incorrect value. It is far better to take many 
extra steps to ensure that the correct parts have been loaded 
into the correct positions for all samples.

A good general rule of thumb is to clearly mark significant 
assemblies with identifying part numbers and version numbers 
that can be traced back to the design documents for that version. 
This implies that you have a good version control (and/or revision 
control) and an engineering change notice (ECN) system in place 
that lets you associate the appropriate design documents (block 
diagrams, schematics, bills-of-materials, source-code versions, 
and tool versions) with any given sample.

Engineering change control systems might not seem to be 
terribly important to you when you are a young, eager designer. 
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Aren’t these things just extra paperwork to keep the managers 
happy? No. They are critical steps to helping you debug your 
design problems. Many different systems can be made to work 
well, but be sure that your organization has some kind of system 
in place.

How Many?
This is one of the most important questions you can answer about 
a problem you are trying to solve. Does the problem happen on 
all samples? Does it happen on 99.9% of your samples? Those 
two are not the same answer! One of the worst situations you 
can have is that your first development sample had the terrible 
luck to be the one assembly that worked. You know it worked, 
you can see it worked, but none of the other samples have worked 
(or might ever work)! 

This kind of failure can happen if your circuit needs a given 
transistor to have gain greater than 50, but the distribution 
of transistors coming from the factory is such that most of the 
production has a gain between 20 and 40. A few units have gains 
above 40, and you were just lucky (or unlucky) enough to have 
gotten a high-gain sample.

The same kind of failure can occur with mechanical designs. 
Tolerances can add up in tricky ways.  A design that had 
excellent fit in the first prototypes might show terrible slop in 
early production.

Likewise, you might find a problem that occurs in only 1% or 2% 
of development or production units. At this point, you don’t care 
what the numbers might be, but you need to know: How many 
are good and how many are bad? Also, are there any units that 
are somewhere in-between?

When?
Some problems are completely independent of time. For example, 
“This bucket leaks” is a problem that might seem unlikely to 
have a time associated with it. If the hole is in the bottom of the 
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bucket, that bucket will probably always leak. But if the hole is 
exactly half-way up the side of the bucket, an accurate problem 
statement would be, “This bucket leaks when it is more than 
half full.”

The problem statement that includes a time reference (when) 
gives you some good information. You are now very likely to look 
up along the middle of the side of the bucket for the hole.

Does the problem happen only on Tuesdays? Does the problem 
happen only when the door to the room is open?

You want to be specific and clear about when a problem occurs, 
but you also have to be very careful about correlating the problem 
to external factors.  A problem that happens very frequently 
(always, perhaps after a few seconds of operation) might appear 
to be related to some other event simply because you are also 
causing that external event at the same time.

You can easily get into superstition about “when.”

You might say something like, “I waved the chicken bone just 
after starting the system and it worked okay.” So maybe you 
need to wave the chicken bone over this system for it to work 
well! Does that really sound like clear thinking? Often, you 
simply did not try enough cycles to know whether there was 
really a correlation between chicken-bone waving and success.

Occasionally, you might actually find a crazy correlation 
between something like waving a chicken bone and success. In 
the absence of a good explanation, you start to believe in a bit of 
magic. Maybe the CPU really likes chicken? I call this magical 
thinking. But eventually, somebody comes along and explains 
that the system is showing exquisite sensitivity to temperature. 
The act of waving anything nearby was enough to cool the CPU 
and keep it working for a little longer.

Where?
Some problems seem to happen only in one place. Conversely, 
some problems happen everywhere except one specific location. 
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This kind of clue is critical to debugging this type of problem. It 
can mean that the problem is truly caused by the location, or it 
can mean that the sample is sensitive to some condition of the 
location that was previously not understood.

If your product fails in Alaska during January or in Arizona 
during July, you might want to think about doing some extra 
temperature-range testing for extreme cold or hot.

Sometimes, the location-sensitivity is not so obvious.  I once 
heard a description of some video monitors that were failing in a 
particular installation in a large city. The monitors would work 
okay for a while, but then would suddenly show drastic image 
distortion. 

It turned out that a subway train ran just behind the wall where 
the monitors had been installed.  The giant electric traction 
motors used to move the trains created a huge magnetic field, 
which disrupted the electro-magnetic deflection of the monitor 
electron beam. An unusual amount of magnetic shielding would 
have been required to make the product work in that location. 
A simpler solution was to move the monitors away from that 
location.  In summary, one critical clue to the cause of this 
problem was where the problem happened.

Who?

One important bit of information you need to collect is whether 
the failure is specific to a single person or a specific category of 
operator.  Sudden, unintended acceleration of automobiles has 
been shown to correlate strongly to certain age groups. This does 
not mean that a specific person or category of user is somehow 
to blame for the failure. But you might find that some previously 
unobserved characteristic of that user (or type of user) directly 
contributes to the problem.

I have noticed that some product testers have a knack for 
“breaking” what seemed to be working products.  They often  
enter rapid or nonsensical sequences of commands, just to see 
how the system responds.  A well-designed system will detect 
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the incoming overflow or meaningless command sequence and 
will recover gracefully and quickly.  A mediocre system might 
take a long time to recover. A poorly designed system might lose 
information or respond in unexpected ways. A badly designed 
system will crash.

Often, young designers will say “Stop! You are using an 
unfair input! You have to wait longer between keystrokes!” or 
something similar. But the best designers welcome and greatly 
appreciate such test sequences.  In fact, they will try to define 
and incorporate such tests into their product testing.

How?
Answering this question is probably the most important step in 
the problem-statement sequence. It is here that you describe the 
exact sequential steps necessary to reproduce the problem.  If 
your “how” statement is accurate, then anybody using the same 
steps with the same samples should be able to reproduce the 
problem.

There is a bit of artistry and a lot of science to writing a good 
“how” statement. You must convey to a skilled practitioner the 
steps he needs to take, but you don’t need to teach him every 
single aspect or the use of every single tool. 

You don’t need to explain how to hold a pencil when you ask 
an experimenter to write something down. But you might need 
to give him a list of the values you want him to record (such as 
date, time, temperature, or velocity).

Why I didn’t include “Why”
Shouldn’t you immediately include “Why?” in your list of 
questions?

Wait! Don’t answer that one. I was checking to see if you were 
paying attention. You are only allowed to answer the question 
“why” after the problem is actually solved. “Why” is never part of 
a good problem statement. The problem statement comes first; 
then you can work on solutions.
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“Why” tells you the cause of the problem.  If you have enough 
information, enough tests, enough proof, you can finally make a 
statement like, “The bucket leaks because there is a hole in the 
bucket, five centimeters above the bottom of the container. This 
has happened because we found a flaw in the plastic mold that 
created a weak spot in the sidewall.”

The worst thing you can do is guess ahead and be wrong. 
When you leap to cause early, you typically eliminate many 
experiments and avenues of investigation. If you are not willing 
to consider those possibilities (and when you are wrong in those 
first guesses), you will find yourself frozen.  You cannot move 
forward because you have found that your first guess kept you 
from collecting the information you needed to make a better 
analysis. 

Politically, you have made a mess by including a guess at cause. 
The boss says, “I thought you said the problem was X.” He probably 
then passed bad information up the chain of management, maybe 
even to a customer. Suddenly, everybody is scrambling to undo 
misinformation. Maybe 20% of that management group will get 
the message that the first “why” was wrong. Do you know who 
now has to spend a lot of time re-educating the other 80%?  You 
do—and your next guess had better be a lot stronger. But if you 
had not made a first guess, nobody would be expecting you to 
have a second guess—or a good explanation at all—until the 
investigation was complete.

“Now wait a minute,” you say.  “The way we always find the 
solution to our problems is to do a brainstorming session where 
we list all of the possible causes and then try to figure out good 
experiments to prove or disprove each of them. So we end up with 
a whole list of possible ‘why’ answers, and then we eliminate 
them until we find the one true answer.”

Yes, I understand your argument. There is nothing really terribly 
wrong with your problem-solving method. However, you must 
separate that list of possible causes from the problem statement. 
Everything in the problem statement should be a verifiable fact. 
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You must keep the beliefs, theories, superstition, and voodoo 
separated from the facts. Otherwise, you end up muddying up 
the waters. 

You sometimes can’t see so clearly because you are trying to look 
through a filter of belief and non-belief. How many times have 
you heard somebody say “I cannot believe the problem is X!” and 
yet you eventually find that the problem was, indeed, X?

False Assumptions, or “What You Know That Just 
Ain’t So…”
You must always be vigilant about what you know. Every so 
often, something you assume to be true, is simply false.  This 
kind of mistake can be incredibly costly to a debug effort and 
can lead you down long roads of wasted effort. You might try 
to establish the cause of something that is not happening. You 
might spend a lot of effort, time, and money chasing an idea that 
never was accurate in the first place. If you have doubts about a 
“fact,” be sure to note that clearly in your list of things you know. 
This can save a lot of time and embarrassment later.

The Old Man
I first read this tale of “The Old Man” by George Rostky in the 
pages of Electronic Design magazine. I consider it a privilege to 
have learned so much by reading the late Mr. Rostky’s editorials, 
week after week and year after year. His wisdom lives on in his 
writings. It is my fervent hope that someday his collected works 
will be published as a single book. My retelling of this brief story 
is a weak mirror of the original.

8 Once upon a time, a group of businessmen gathered in a 
local bar to decompress a little after a particularly difficult week.

The first one said, “I wish I could relax like that old codger 
hunched over at the end of the bar. Look at the line of empty 
glasses in front of him. I’ll bet that is what keeps him young, all 
of the drinking! Maybe all the alcohol has pickled him from the 
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inside.”

The next man said, “No, way. That guy has been chain-smoking 
since we came in here. The barkeep has emptied that ashtray 
three times and he already has it half full again. The nicotine 
high must be keeping him going.”

The third businessman said, “Nah, it is the bad food. He has 
been pounding down greasy burgers and fries like there is no 
tomorrow.”

A fourth said “Hey, I was in here last month and also last week. 
He is always here, and there is always a beautiful 40-something 
woman with him. It has to be the women. That is what is keeping 
him so youthful.”

Finally, the argument got the better of them. They approached 
the old guy. “Hey old-timer,” one started. “We were just debating 
what might be the secret to your longevity. Is it the cigarettes, 
the booze, the food, or the women?”

“Well, perhaps I owe it to simply living so long,” he replied with 
a bad-toothed grin.

“No, really, we want to know because we can’t agree. But first, 
maybe you could tell us just how old you really are?”

The wrinkles on the man’s forehead deepened and he squinted 
at them through narrowed eyes, obviously digging through his 
mental haze to pull up the number of his last birthday. Then 
nodding as it came back to him, he replied with surprising clarity 
and obvious truthfulness.

“I’m 24” he said.
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Looking ahead, there is something else that you know—or that 
you should know: a set of rules that tells you how the known 
and unknown parts of your problem relate to each other. 
Mathematically, these rules form equations or relationships. 

But before I discuss those rules, I need to dive into a really 
critical part of solving problems: clear communication.

Writing a problem statement
A good problem statement collects together this critical 
information:

1.	 What?

2.	 Which?

3.	 How Many?

4.	 When?

5.	 Where?

6.	 Who?

7.	 How?

When writing a problem statement, you should clearly note 
items that are suspect. At the same time, watch out for false 
assumptions and avoid jumping to any conclusions this early 
in your investigation.
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Communicating Clearly 

8 Once upon a time, a senior-management visitor from 
Europe, whom we shall call Mr. Big, came to an engineering facility 
in the eastern United States. His company had purchased an 
American organization including several technical development 
centers.  There had been several setbacks in a recent project. 
Corporate technical planning had been too optimistic, and now 
the project faced cancellation. In brief, Mr. Big was there to meet 
the team and assess their chances for success—or perhaps to 
kick asses and take names. 

Walt was a local American manager who had worked in the 
European headquarters for some time before coming back to the 
United States. He had an ear for the language and could usually 
convert somewhat fractured English to American-speak without 
much trouble.

Walt’s team included some key engineers, including Mickey, a 
brilliant electrical engineer with a quick wit and irrepressible 
good humor, and Ralph, an experienced mechanical engineer 
with very little sense of humor and a provincial, if not downright 
xenophobic, attitude toward the European owners.  The third 
key team member was Kevin, a very sharp printed circuit board 
layout engineer who preferred fishing to most everything else 
in life. Kevin was even-tempered and quiet: a good listener who 
always did his job and rarely complained.

Walt led the visitor into the lab, where the trio of key engineers 
waited.

“It eeze nice to meet you,” Mr. Big stated and hands were shaken 
around the room with brief introductions. “I understand zat you 
will be ze team to fix our big project problem?”

“Yes, these are our best engineers,” Walt quickly reassured Mr. 
Big. Walt gave a brief summary of how the project had been 
handed to his team without their participation in any of the 
scheduling. 
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Walt then mentioned the three specific problems they had 
encountered while trying to finish the design.  Two of these had 
been solved quickly, but the third was still in the process of being 
unraveled.

Mr. Big listened carefully, but his shoulders hunched up in a 
pose that conveyed unhappiness. His eyes stayed on Walt, but 
then shifted to the trio of engineers.  Walt glanced at Ralph and 
could see that his face was tense.

Mr. Big said, “We must fuck youz to reach our goal.”

Ralph’s face turned bright red and the veins in his neck popped 
out.

The corners of Mickey’s mouth twitched. Ralph leaned forward 
slightly, and Walt rotated his own left shoulder forward a tiny 
amount, placing it between Ralph and Mr. Big, just in case.

“The shower doors are counting on this project to improve the 
value of their chairs,” Mr. Big continued, “but they will not wait 
forever.”

Kevin scanned the room, looking at the desks and chairs. “What 
the heck,” he thought. “Who cares about the chairs?”

Mickey fairly bounced on the balls of his feet while Ralph’s 
jaw tensed further. Walt leaned in quickly and guided Mr. Big 
toward the test facility down the next hall.

The trio volleyed their confusion once the visitor was out of 
earshot.

“Well that was special,” giggled Mickey.

 “I should have punched that jerk,” growled Ralph.

“What was that all about?” wondered Kevin.

Shortly, Walt rejoined them.  He had passed Mr.  Big to the 
next local manager who would demonstrate some of their new 
software-development tools.
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“Okay guys,” said Walt as he came back into the room. “I could 
see we had some trouble with that little speech he gave.”

“Some trouble!” exclaimed Ralph.  “Did you hear what he said 
they were going to do to us? What a butthead!”

“Wait, calm down,” Walt replied. “I think you heard what you 
expected to hear. But that was pronunciation, not denunciation.”

They chewed on the meaning of that for a few seconds.  Walt had 
a way with words.

“He said we need to focus to reach our goal,” Walt explained. 
“It’s just that his pronunciation made it sound like something 
completely rude.”

Ralph’s posture relaxed a bit. Mickey was already laughing out 
loud. 

Kevin was still perplexed, “What was that nonsense about 
shower doors and chairs?”

Walt grinned, realizing how Mr. Big’s foreign accent had mangled 
his meaning. “He was saying that the shareholders (not shower 
doors,) are impatient. They are worried about the price of their 
shares, not chairs.”

Communicating Clearly: Verbal Discussion
One of the first barriers you will encounter to problem solving 
will be poor communication. 

Remember that example of a lousy problem report? “It does 
not work.” Yuck! This makes me physically sick to think 
about! Yet, it is one of the most common headaches in solving 
problems. You cannot get many people to communicate a clear 
problem statement. They use indefinite articles (it) and nearly 
meaningless generalizations (does not work).

For so many statements that I have heard or read in early 
problem-solving reports, the appropriate response should really 
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be, “What the hell was that supposed to mean?” Unfortunately, 
such a response will only make later communication even more 
difficult. You need to collectively pause and then find a better 
way.

You are probably going to find yourself in situations in which you 
have to conduct an interview, either face to face or on the phone. 
You might have to ask many questions to extract a clear meaning. 
People will wander off into unimportant discussions that mean 
something to them but don’t help you solve the problem. You can 
politely ask them to try to limit their responses to very short, 
factual statements. It won’t help much, but you should still try.

You also need to remember that when you first learn about a 
problem, you will be full of many misconceptions (bad ideas) 
about what the other person is trying to tell you. You probably 
don’t get what he is saying. It might take several tries before you 
understand any of his statements.

This is why breaking the discussion down into those little pieces 
is so important and can be so helpful. First, ask the person to 
identify the “what.” Collect all of those facts in short little pieces. 
You can be friendly and encouraging. Psychologists would say 
that you are getting the other person into an affirmative mode. 
You don’t want to fight; you just want to help the other party 
help you.  Everybody wins because you are making progress, 
even if it seems slow at the beginning.

One of the barriers I have encountered is a dependence on 
verbal communication. We all live inside our own heads, so the 
words we say sound just fine to us when we say them. I know 
what I mean by “it” and by “work,” so the statement “It does not 
work” makes perfect sense to me when I make it. But when it is 
written down, maybe I realize that there is not so much useful 
information there.

A significant difficulty in multi-location (sometimes 
international) problem solving is that even if every person in 
the conversation is capable of speaking and understanding the 
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same language, they probably don’t share the same collection of 
conversational idioms. These are those short collections of words 
that might have a very clear meaning within a small, local group 
of speakers, but are impenetrable to remote persons.

In English, we might talk about “pulling somebody’s leg,” but 
we really mean we are teasing them or making a joke by telling 
them something that is not true.

Or we might say it is “raining cats and dogs,” but we are not 
being literal. There are no small animals involved. (The original 
source of this expression did indeed involve animals, but today 
we just mean it is raining very hard.)

It can be fun to try to list all of the common idioms that 
get used in a five-minute stretch of conversation during a 
meeting. We rarely speak as clearly as we think we speak.

Communicating Clearly: Conference Calls
Big, multi-location corporations seem to be in love with conference 
calls.  It is true that from time to time, a conference call can 
lead to that “aha!” moment, where some previous statements 
in an email or relayed phone message suddenly make sense. 
That being said, conference calls often pull in multiple layers 
of management, which results in so much management-speak 
that any real ability to communicate is quickly lost. Hours of 
time and many person-hours of effort are wasted during endless 
regurgitation of useless information.

A few rules must be in place if you want to get anything useful 
from a conference call. First, have one person at each location 
or endpoint do a quick introduction of all the people on the call. 

Also, unless managers are also taking on specific problem-solving 
roles, they should mostly stay quiet—very, very quiet. They are 
welcome to speak up if it is to volunteer a specific resource to 
help solve the problem.

One person must be assigned to take notes and publish a 
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summary of the call. Be sure to include contact information in 
the summary of the call. A good conference-call summary will 
always list specific action items coming out of the call.  These 
action items must include the following details:
●● What is the action?
●● Who is assigned to perform the action?
●● When should that action be completed?

Don’t worry, there is plenty of flexibility in such lists. If the action 
is, “Measure the output DC bias and signal voltage seen at the 
collector of transistor Q101,” and you find that you should have 
been talking about Q201, then it is easy to publish a correction or 
explanation. If the action is assigned to Fred, but he passes that 
responsibility to Sam (who agrees to perform the action), such 
reassignment should be okay. If the action is due by Thursday, 
but you don’t finish until Monday, then maybe you are in trouble 
with your boss—but hopefully you gained enough information 
over the weekend to help solve the problem.

Communicating Clearly: Email
At one time in my life, I believed that email should be the 
universal answer to good communication.  Just write it down! 
Type a few words into the computer, hit Send, and there should 
be no problem with clarity. Boy, was I wrong.

One of the main problems with email is that it does not convey 
the sender’s body language or the tone of voice behind the words. 
Sarcasm, satire, irony, and humor all depend on everybody in 
the conversation having a clear idea of the true intention of each 
statement. But simply receiving a neutral email can lead to a 
surprising number of misunderstandings.

If you capitalize SOME SPECIFIC WORDS to add emphasis, 
people think you are shouting at them.  If you use bold 
characters or italics for the same reason, some readers will 
assume that you are being snide or sarcastic. If you copy some 
words from their previous email and put those words in quotes, 
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they might feel you are attacking them, using their own words 
as a weapon. (And to be fair, maybe you were.)

I continue to be amazed at how many ways people can 
misunderstand a few simple words.  I am also always amazed 
at how something I wrote one day can suddenly look and sound 
completely different—even to me—on the next day.

The best advice I can give is to keep email and written reports 
as short, simple, and factual as possible. Delete any editorial 
comments from your written summaries. You don’t need to say 
“Obviously, this product is not ready for the customer.” Unless 
you have been asked for a direct opinion as to the readiness of 
the product, you should stick to the facts of the failure. 

Let’s pretend that your boss directly asked you, “Is this 
product ready for the customer to see it?” You can respond, “In 
my opinion, this product is not ready for the customer.” Just 
dropping the word “obviously” and qualifying the statement as 
being your opinion (not fact) can make a huge difference in how 
that statement is viewed later by a wider audience. In the first 
example, you might be seen as an arrogant pile of excrement, 
in the second example you are simply a careful, thoughtful 
employee responding to a management query.

I am frequently surprised by how often engineers fail to use basic 
tools that enhance communications. Simple block diagrams can 
quickly clarify where in a system a problem exists or is being 
observed. Flow charts, schematics, timelines, graphs, instrument 
captures, and even little cartoons can help folks at the other end 
of the communication understand what you are trying to convey.

That being said, stay away from jokes in written communication 
about a problem. People from other countries and other cultures 
often simply do not understand a clever play on words. 

Also, if the problem turns out to be extremely serious (for 
example, people are injured or killed by your design), those jokes 
can come back to haunt you in court or in the general perception 
of the public.
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Communicating Clearly: Photographs
When you have a test setup, take a photograph of the basic 
environment. Very often, this can immediately lead to solutions 
to problems.  For example, the person at the other end might 
realize that although you have been referring to an output at 
connection X, you actually have the cable plugged into connection 
Y.

Photographs are also great at conveying some specific details, 
especially of things that are too small to see easily unless you 
have a magnifier or microscope.

Communicating Clearly: Videos
One of the quickest ways to simulate having the person with 
whom you are communicating sitting next to you is to record 
some video of the test or demonstration.  You might need to 
restrict the length of the video or keep the resolution fairly low 
if you have a bandwidth limit for the transfer of the video. More 
resolution is better, but longer video may not be—especially if it 
just shows you sitting there thinking or talking about what you 
wanted to demonstrate. Keep it short, keep it sharp, and keep 
it smart.

Critical Question: Has it Ever Worked Before?
One of the most straightforward questions you can ask is whether 
the system in question has ever worked correctly before now. 
Although the question is straightforward, finding the answer 
often is difficult and complicated.

For one thing, people working on a new design simply may not 
know or might not recognize that the system never has worked 
correctly. In the excitement of bringing up a new video player, 
they might not have ever actually listened to the audio! In a 
high-pressure, quick-paced development environment, it is not 
uncommon for thorough testing to be delayed or pushed toward 
the end of the project.
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The thinking becomes “We have seen that part work, so let’s 
move on to the functions or features we have not implemented 
yet.” Complete testing checklists are skipped over due to pressure 
to reach design-complete status.

Likewise, even very mature products can contain surprising bugs. 
If the system depends on an outside device that is not complete 
or does not even exist at the time of the initial development, 
everybody within the design team may simply assume that the 
interface works (or will work), and the product goes out the door 
having never passed a functional test with an external device or 
simulator.

Critical Question: How often has it worked before?
Even if a feature or interface has had some amount of testing, 
we all have experience with designs that turn out to not play 
well with large numbers of real-world devices that have been 
developed by other design teams.  As design and interface 
complexity grows, this kind of situation arises more and 
more often.  One way designers attempt to cope with this is 
to test their product against as many examples of third-party 
implementations as possible.

For example, certification of devices with USB interfaces typically 
requires participation in a “plug-fest,” where manufacturers are 
challenged to demonstrate that their device can work correctly 
with (appropriate) devices from all other manufacturers. So an 
inkjet or laser printer might need to show that it can talk to USB 
ports on a variety of different motherboard implementations. A 
set-top-box design might need to demonstrate that its HDMI 
port can successfully work with a large array of TV set brands 
in various modes.

Such interoperability testing places ever-growing demands on 
designers and their companies. A library ranging from poor to 
excellent implementations of “the other end” must be maintained. 
The costs of such collections can quickly spiral out of control.
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Listening to the Customer. 
One of the most difficult things we are asked to do as designers is 
simply to listen to the customer. As I will discuss later, there is a 
built-in assumption that we must be smarter than the customer. 
Otherwise, the customer would not be asking us to design or 
make the product, would he? If he were as smart as us, wouldn’t 
he just design this product himself?

Nope, not true. There are many reasons a customer might choose 
to purchase instead of build his own product or system.  It is 
critical to the success of any enterprise that its representatives 
learn to listen to their customers and to value the feedback they 
are getting. The customer is trying to tell you what he wants. 
That message is absolutely critical to you, because the customer 
is the person who pays you real money for what you are selling. 
If you don’t listen and respond, he will quickly find somebody 
else who will.

When I ran some electronic businesses in the past, I found that 
the customers I liked the best were the ones who truly did know 
more than I did about what products they wanted and needed. 
Their advice was smarter and more useful. They also recognized 
the value of using my company to provide products that they 
might have been able to build themselves. If nothing else, buying 
from my company assured them that they would not receive bad 
units, which we had carefully filtered out in production testing.

Active Listening
Short definitions of active listening typically include concepts 
like feedback, summarizing, and openness.  You work hard at 
absorbing and embracing what the other person says.  Many 
classes, books, and online references teach the skill of active 
listening.  You should find one and learn this skill.  It is an 
integral part of putting together a problem statement. 

In some way or another, the person reporting the problem is 
your customer—or maybe they are an internal stand-in for 
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your customer. You need to collect this information quickly and 
accurately. You might need to work out a common vocabulary, 
but you must get this human-to-human interface working to get 
a clear description of the technical problem.

How Was the System Supposed to Work?
The best descriptions of a problem must include some discussion 
of the expected system behavior.   More importantly, you need 
to write these statements down, not just think such wording to 
yourself or say it in a meeting somewhere.  Write, “When I do 
this, I expect the (system, object, or person) to do that. Instead, 
I find that it is doing this other thing.” (Hopefully, you will get 
more specific identifiers than this, that, and this other thing from 
a good problem description!)

Often, I find that I am the person reporting the problem—and 
sometimes I find that I am reporting the problem to myself. 
Oddly, that makes it all the more important that I use clear, 
unambiguous language to describe the expected behavior.  It 
can be too easy to take shortcuts when you are just talking to 
yourself. You already know what you mean and already know 
what you were thinking, so you don’t take the time to write 
it down clearly.  That is a mistake. Eventually we all need to 
communicate our problems and solutions to other people.

Maybe you will need to write a patent application to describe 
how you overcame a problem. Or maybe you will need to warn 
the customer not to make a common mistake in your user’s 
guide. Or maybe you just need to keep your managers aware 
that you are earning your paycheck. If you cheat here, you are 
just cheating yourself. These descriptions of expected behavior 
are absolutely critical to problem solving.

Your clear problem description might also become part of 
marketing literature later in the life of a product. Your sales or 
marketing departments might be able to promote your solution 
as a key feature that your competitors do not include. In some 
cases, clear problem descriptions can make their way into user 
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manuals, in “How to Use It” sections or maybe in “How NOT to 
Use It” sections.

Different settings create different 
communication problems.

1.	 Verbal Discussions

2.	 Conference Calls

3.	 Emails

Use these tools to improve clarity and 
understanding:

1.	 Photographs

2.	 Videos

3.	 Block Diagrams

Key Question: Has the system ever 
worked before? (What evidence do you 
have?)

Hints:

1.	 Listen to your customers.

2.	 Practice active listening.

3.	 Be sure you can write a clear description of how 
the system is supposed to work.
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Barriers to Good Communication

Customer-support groups are often filled with stories of end-user 
stupidity. Like the guy who couldn’t figure why his printer would 
not work, but had never plugged it into a power source. Or the 
tale of the lady who inserted disk after disk into a floppy drive 
during a software setup, but never realized she had to take the 
previous disk out before inserting the next one. Her complaint 
was that she could not put disk 4 into the drive.

Sometimes, customer-support groups have special codes for these 
users, such as “PEBKAC,” meaning “Problem Exists Between 
Keyboard and Chair.”

The “People Are Dumb” Automatic Bias 

Given these stories, it probably comes as no surprise that one of 
the biggest barriers to good communication about any problem 
is that we all have a tendency to assume that the guy at the 
other end of the conversation is just not smart enough. By this, 
I mean we think the other guy is not so bright. Dumb. Stupid.
Idiot. Moron. He has a head full of rocks. This is so obvious to 
me, why can’t he see it clearly? 

But the following is true no matter which side of the support desk 
you are sitting on: I am sorry to say, the reason the person on 
the other side cannot understand what you are saying is almost 
certainly because you are not saying it very well. You probably 
have left out several of the items in the where/what/when/who/
how list. You probably have not used all the great tools at your 
disposal, such as photographs, videos, charts, and drawings, to 
explain how to use the product. Or, if you’re the one with the 
problem, maybe you have not used similar tools to report it. 

As much as anything else, you probably do not share exactly 
the same vocabulary for your description. You might be talking 
about processor exceptions, but the person on the other side 
is thinking about hardware interrupts. You are talking about 
fasteners, nuts, and bolts, but he only understands that he is 
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getting screwed. You are talking about boards, but he became 
bored and angry a long time ago.

When you find that your conversations (whether face to face, 
via conference call, or written) are not getting you to a place 
of common understanding, stop and think hard about the ways 
you are communicating the various aspects of the problem. You 
might even need to write a glossary—a dictionary of the technical 
terms specific to this project and this problem. Make sure that 
everybody agrees on the terms. If other parties are using words 
or concepts that don’t make sense to you, make sure you stop 
them and ask for explanations—preferably as well-written as 
you are providing to them.

Look, if they are uninformed, it is because you are not doing a 
good job of educating them. “Hey, that’s not my job,” you retort 
angrily! 

“Get over it and get used to it,” I reply—and your boss is with 
me on this one.  It is always your job to teach and to elevate 
the knowledge and understanding of those around you.  It is 
what makes a successful enterprise. If you are the only one who 
understands something, then you are actively failing. If you hide 
away knowledge, then you might think you cannot be replaced. 
But if you cannot be replaced, then you cannot be promoted. You 
will be stuck in one place—and maybe not for as much time as 
you hope.

There are occasionally organizations that cultivate chains 
of incompetence or islands of restricted knowledge. They 
rarely survive for long.

Jargon
Jargon is a double-edged sword in most businesses. It can work 
to your advantage when everybody is carefully trained to share 
the same meaning for obscure acronyms.  In this case, jargon 
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speeds up your daily workflow. “Hey Ralph, Bring me another 
247,” is fast and efficient if Ralph understands that what you 
want is part number 123456789-247. 

But it can lead you into trouble if Ralph is the new guy and 
brings you part number 247456789-001 (which looks nothing 
like the part you need).

I once sat in a project meeting at a company where I was the new 
guy. It became clear to me that our competitors could have sat in 
this same meeting and learned almost nothing about the state 
of our projects. The discussion was carried out almost entirely 
in jargon and acronyms that were specific to internal company 
operations.  Every company location had an obscure multi-
letter code, and every project milestone had a similarly obscure 
acronym. After the meeting, I sat down with a list of codes and 
acronyms I had captured and asked anybody who would give me 
a few minutes of their time what each bit of jargon represented.

Pretty quickly, I became an “insider,” and could decode the flow 
of the conversation in real time.  But that first meeting was 
brutal, and could have led to a lot of misunderstandings.

“It Works Fine for Me” Automatic Bias. 
Have you ever found yourself saying something like this: “I have 
never seen this thing do what you say it is doing, so you must be 
doing something wrong.”

At some time or another, we all fall into this trap.  It is an 
absolutely guaranteed method to infuriate your customer, your 
spouse, your friend, or any other living, breathing, human being. 
People just don’t like to be told that they don’t know what they 
are talking about. They don’t like to hear that you think they 
must be the problem—that you think they are not smart enough. 
Let me tell you a little story about that.

The Magical Taxi Trunk
8 Once upon a time, Tony drove his taxi into the service 
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bay of the taxi company where he worked. It was the early 1950s 
and guys in the Big Apple were happy to have some steady work. 
Tony was middle-aged, thickening a bit around the middle, and 
had an easy laugh that made people like to be with him.

On this day, however, Tony was visibly upset.  “Hey! Which 
one of you jokers is messing with me today?” he exclaimed. All 
of the mechanics looked at each other with slightly confused 
expressions. If they had conjured up a good prank, they would 
have shared it with each other long before this.

Interpreting the blank looks as poker-face bluffing, Tony 
launched into a diatribe. “Look, I can take a joke with the best of 
them, but this is not funny. You clowns have rigged up my taxi, 
and it is costing me a lot of time and that time is representing 
real money to me!”

Sam, the senior mechanic in the shop, stepped forward.  “Just 
what is it that you are having a problem with Tony? You know I 
don’t let anybody mess with our vehicles.”

“One of you guys is trying to have a big laugh at my expense. 
Most of the time when I press the Talk button on this new 
radio, my trunk opens up. This started as soon as I got about 
two blocks from here and kept happening every 10 minutes, all 
morning long.  I get out and close the trunk every time, but it 
happened again and again. I also think you broke my exhaust 
system, ‘cause I can smell it every time I get out to close the 
stupid trunk.”

Sam tried to reason with the irate driver, “Now just a minute. 
You know that we don’t have any kind of automatic trunk release 
on these cabs, Tony. What you are telling me is just not possible. 
Maybe you aren’t latching it right or slammed it so hard one 
time that you damaged the latch.”

Tony was getting red in the face. “Don’t tell me I don’t know how 
to close a trunk! I have been doing this for a long time, and the 
car never did this stupid thing before! And it only happens when 
I press the Talk button on my radio, but it didn’t happen when 
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I drove over the big bump over on 38th Street, so don’t start 
telling me I don’t know what I’m talking about!” Tony’s voice 
was now louder and higher pitched than when he had started, 
and his face was shifting from red toward a hint of purple.

Sam made another try, moving to within arm’s length of Tony.  
“Now calm down, buddy. Nobody here is messing with you. But 
you have to understand that what you are telling us is impossible. 
It can’t happen. I’m sorry, but you must be wrong.”

Big mistake. Tony hated to be told he was wrong. Eyes bulging, 
Tony shouted, “IMPOSSIBLE? I’LL SHOW YOU IMPOSSIBLE!” 
He turned sharply and jumped back into the front seat of the taxi. 
He closed the door, picked up the relatively large microphone, 
and turned back toward the semi-circle of mechanics facing him, 
stretching the coiled cord across his chest. He smiled a bit and 
then depressed the Talk button.

BANG!

It took a few seconds for the echoes of the shockingly loud sound 
to stop reverberating through the shop. Every mechanic stared 
open-mouthed, for they not only had seen the trunk pop open, 
but from their viewpoint, had also seen the enormous fireball 
that had exited the trunk.

Tony was already coming back out of the driver’s seat, 
“Impossible? I got your impossible here! What do you think 
of that, smart guys?! How come you got nothing to say all of 
a sudden?” Tony’s view of the fireball had been blocked by the 
trunk lid. Now his nose crinkled up and he suddenly exclaimed, 
“Hey, now it stinks like that exhaust smell in here too!”

Sam reached out, his composure only partially recovered. His 
voice was still a bit shaky. “To-Tony, you were right. And you 
were very lucky. Let me show the guys what went wrong here, 
and you can listen in too.”

Pulling the rest of the mechanics to the back of the taxi, Sam got 
out a screwdriver and a flashlight. It only took a few minutes to 
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remove the screws holding the new two-way radio box that had 
been installed the day before. 

“Look here. When the guys went to install the radio yesterday, 
they drilled some pilot holes for the screws to hold the mounting 
brackets. Unfortunately, somebody let the drill go too far. They 
drilled right down through the top of the gas tank, which sits 
under the trunk. Gasoline fumes were leaking slowly up through 
that new hole and filling the trunk. Each time you pressed the 
Talk button, the relay contacts on the transmitter created a 
little spark. If the fuel-air mixture was rich enough, a significant 
explosion was the result.” 

“Blasting open the trunk was the smallest part,” Sam continued. 
“You were lucky you didn’t end up incinerated. Come to think of 
it, I heard about an unexplained taxi fire over in Boston. It was 
burned to a cinder. They thought it might be arson, but I have a 
feeling they might have had a similar problem.”

Tony’s face had now transitioned back from purple through its 
normal color and was headed toward a sickly greenish gray. “I 
coulda been toasted!” was all he could whisper.

Overcome common barriers to clear 
communication

1.	 Start with an assumption that the person reporting the 
problem is intelligent and sincere.

2.	 Listen to what they are telling you without jumping to any 
conclusions.

3.	 Be very careful about jargon. Make sure you are both 
using the same words to mean the same things.

4.	 Just because you have never seen the problem does not 
mean that problem is not real.
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Methods for Better Communication

Having discussed some barriers to clear communication in the 
previous chapter, let’s talk about more methods that can help or 
hurt your ability to reach a shared understanding of a problem.

Whiteboard Abuse
Are you familiar with the television drama House, M.D.? This 
entertainment program revolves around the adventures and 
misadventures of a medical doctor, one Gregory House, M.D. He 
is addicted to painkillers, is abrasive, and is abusive, torturing 
his associates with juvenile and self-centered behavior.  The 
concept of the program is that they all put up with his horrible 
behavior because they desperately need his brilliant diagnostic 
skills. 

In other words, he is supposed to be a wonderful and brilliant 
debugger.  In his world, the systems are the human body and 
various diseases.  

It is kind of strange, but every medical worker I talk to about 
the show thinks that Dr.  House is actually one of the worst 
diagnosticians they have ever seen.  The actor playing House 
is fantastic; the cast surrounding him is young, attractive, and 
interesting; but it can be painful to watch the group stumble and 
fumble their way to solutions. 

Ostensibly, this is because House is solving the really difficult 
cases. In fairness to the writers and the viewers, however, the 
clues are generally out in plain sight. This really means that 
House is just like the rest of us. He flails about, ignoring red 
flags and chasing hunches when he should be spending a lot 
more time on his problem descriptions and methods. 

This brings me to my least favorite part of the show: Dr. House 
(at least in the early seasons) is too fond of using a dry-erase 
board (also known as a “whiteboard”) to write down the key 
clues and possible diagnoses.

There is nothing wrong with using a whiteboard to quickly 
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gather a list of facts or to scribble out simple block diagrams 
that show some relationship or sequential function. I have done 
this myself many, many times.  But the correct use of such a 
brainstorming tool is to then collect the information and neaten 
it up a bit into some kind of electronic format. Type that list up 
in a document file, copy it to a spreadsheet, or at least take a 
photograph of it! Remember, we live in team environments, and 
we need to be able to communicate these ideas quickly to other 
folks who might be far away. A clear history of your thinking 
and a clear description of the problem will be critical later in the 
debug process.

Unfortunately, the fictional Dr.  House is perfectly willing to 
work an entire case from his whiteboard, erasing and crossing 
off ideas when he has done a preliminary test that seems to 
eliminate some particular diagnosis. So my next objection is that 
he exhibits classic jumping-to-conclusions behavior with his 
brainstormed list of possible causes. A whiteboard is not such a 
great method for recording multiple tests, complex interactions, 
detailed step-by-step analyses, or statistical representations. 
In fairness, the team of doctors sometimes is shown looking at 
multi-page file folders, but the portrayal is that these are just 
stacks of “fact papers.”

A slightly better example of whiteboard use is found in the 
“Lincoln Rhyme” mystery novels written by Jeffrey Deaver. 
Forensic scientist Rhyme’s assistant meticulously records key 
facts on large whiteboards.  In this case, additional documents 
and photographs or charts may be posted on the whiteboard. 
The novelist often summarizes the running contents of the 
whiteboard at the end of a chapter or section. In this way, he is 
playing fair with the reader, keeping all the clues in front of you, 
while still working magic in the words that eventually reveal the 
true nature of the crime.

Another TV show mystery named Castle extensively uses a 
whiteboard, but in this entertainment, the characters all seem 
able to keep long lists of additional facts in their heads. They 
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point to simple relationships between a few photographs on the 
whiteboard and then recite complex deductive reasoning using 
many extra facts that leads them to final understanding of who-
done-it.  It is neat that they are all that smart and have such 
good memories, but I’m not sure I find such debug skill plausible.

Now you sigh and say, “Okay Mr. writer-guy, so what are better 
methods?”

Use Whiteboards (Yes, Whiteboards!)
Oddly, the first recommended method on my list is still to 
use whiteboards. But please, use them only in a very limited 
way.  They are good for small, local groups and are great for 
brainstorming. This is where you throw out a bunch of ideas to 
build a list of questions, possible causes, or possible avenues to 
investigate. Or, you can scribble a picture or schematic diagram 
of how you think the system should be working or how you think 
it is actually working. But this presentation is only useful to the 
people in the room at that moment. 

As soon as you have your list or your sketches, take a photograph 
of the whiteboard.  If all else fails, you can always transmit a 
copy of your photograph to other participants. This is probably 
one of the weakest ways to communicate your thinking, but it is 
better than a big empty nothing.

Some whiteboards have built-in printing capabilities, but that 
feature has faded in popularity in recent years. There are also 
computer-based whiteboarding applications, which enable you 
to project a computer display onto a larger screen for group 
viewing. The drawback to this method is that you can usually 
have only one person “driving” the computer. This might require 
some training and skill, whereas almost anybody can “drive” 
a marker and a whiteboard.  However, software whiteboards 
capture the image digitally and make it immediately available 
for distribution.
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Convert Your Brainstorm to an Electronic Format
Quickly commit the information from your whiteboard exercise 
to an appropriate electronic format.  This might be a word-
processing file or a spreadsheet file. You might embed drawings, 
sketches, charts, or diagrams. Sometimes, you can simply use 
links to external documents.

The point here is that sooner or later, you are going to need to 
communicate the investigation to somebody who will be outside 
of the room that contained your whiteboard. Those people cannot 
see inside your head and they cannot see your whiteboard—and 
yes, whiteboards get erased (by intention or accident).

Writing allows us to transfer our ideas across space and time. 
Bigger teams, global development, and global customers push us 
toward modern methods of electronic communication. If you store 
your information this way early, you will have a great starting 
point to edit your notes into documents that are appropriate 
to your next audience. These documents might be transmitted 
by email, Web access, FTP sharing, or even FedEx envelopes. 
Your physical whiteboard does not fit any of these transmission 
methods very well.

Simplified Block Diagrams
One of the best tools I have encountered for dealing with complex 
systems—especially in debugging mixed hardware/software 
systems—is a simplified block diagram. Sometimes, you will use 
a block diagram to represent the entire system, with emphasis 
on the major blocks and the interfaces between those blocks. You 
need a list of the “goezintas” and “goezoutas.”  These silly words 
mean you need to know what “goes into” a block and what “goes 
out of” a block in that diagram.

Often, when creating and discussing these block diagrams, you 
will suddenly realize that there is an obvious hole in your system 
design—a completely missing interface or signal. You also might 
find that the interfaces are there, but you have not really done 
any good testing of one specific interface. When you go look, you 
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suddenly find that the interface is not working in the way you 
expect.

Complex systems can incorporate feedback. This says that signals 
into one block depend on signals coming out of that same block 
or a later block. Closed loops like this can increase stability and 
performance of a system or can lead to wild, unstable oscillation 
of the entire system.  Feedback systems and safety-limiting 
systems can also cause a system to simply shut down and stop 
normal operation. Because these controls are expected to help 
the system, it can be confusing and difficult to understand that 
they also might be keeping the system from working at all.

This book is not meant to cover control-system theory or 
stability. I must assume (and hope) that you have a good 
grasp of that subject when your system includes feedback. 
This can be a good area for further research and for advice 
from true experts. 

You use the block diagram to complete two different tasks:
●● To record and collect some important things you know
●● To quickly highlight some things you don’t know

A later chapter discusses things you don’t know, but it should 
already be obvious that in the process of capturing the things 
you know, you will inevitably expose some things you don’t know 
(and will eventually need to find out).

Bug-Tracking Software
Software folks have been dealing with a specific methodology 
for this kind of problem solving for a long time.  They use a 
computer database to do bug tracking.  A good bug-tracking 
database enables you to store lots of who/what/when/where/how 
information in one place. Most bug-tracking software allows a 
manager to assign a specific bug to various parties and record 
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their progress. Sometimes, these databases are even visible to 
customers or partners.

Well-run organizations use bug-tracking databases to also follow 
hardware or system problems. This is ideal for following up on 
problems that are not immediately assignable to just hardware 
or just software.

Note that all of these methods work well, whether you are the 
person reporting a problem or the person solving the problem. 
Both of you will need to communicate clearly.

It is with great trepidation that I have included any 
mention of recent television shows.  Nothing dates a 
work so quickly and badly as referencing some popular 
culture item. Please forgive me, I will attempt to avoid it 
elsewhere in this text.

Methods for Better Communication

1.	 Use whiteboards (but in a limited way).

2.	 Convert your brainstorming to an electronic format.

3.	 Share photographs, video, or documents; any files you 
can easily store and transmit electronically.

4.	 Use simplified block diagrams.

5.	 Use Bug Tracking Software to organize your efforts.
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What are the rules?

When you ask the question “What are the rules?” you might be 
asking if you know the rules and have successfully applied them 
in your design. If this is somebody else’s design, then you need to 
understand the rules in order to know how the designer intended 
the product to work in the first place. Once in a while, you will 
find a product that never could have worked the way the vendor 
describes. We all hope that is a very rare occurrence.

Sometimes, rules might be very simple. Let’s think about fixing 
a leaky roof:

●● Water runs downhill (gravity).
●● Water can wick up into a narrow cavity (capillary 
action).

●● Water will flow along a surface when it can (surface 
tension).

●● Water running across a surface often leaves behind 
sediments and residue.

Knowing these rules might help you to recognize where water 
is getting into an attic space and why the water might come out 
into an interior space that does not exactly match the location of 
a defect in the roof or maybe an overflowing gutter.

Using the fourth rule, you might find some residue or evidence 
of the path of the water once it is below the roof. If you can see 
where the water comes in, you have a much better chance of 
figuring out where to put some patch material or where you need 
to replace a shingle or board on the roof. The other rules give you 
ideas for where to look. Using the first three rules, if there are no 
available surfaces for the water to run along (or run downhill), 
then the water might be dripping directly to the spot you find it. 
You simply look straight up.

You might think this is too simple of an example, but it is a 
common enough problem. Many people have already tried (or 
will someday experience trying) to locate the source of a leak.
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When debugging complex electronic circuit boards, I am always 
astonished at how many problems come back to the simplest 
possible rule of electricity: Ohm’s Law. This relation states that 
the voltage drop across a circuit is equal to the current flow 
through the circuit multiplied by the resistance in the circuit. In 
formula form:

E = I * R

This is so simple, how can people get it wrong? Yet over and over 
again, I find printed circuit-board layouts that use too small of 
a conductor to carry a given current. I find systems wired to a 
remote power supply using too small of a wire diameter. I find 
high-current connections that depend on tiny mating forces to 
keep them in contact. The result of such mistakes will be too 
large of a voltage drop, meaning that less voltage (energy) is 
delivered to a key spot on the circuit board.

Sometimes, this problem shows up only with high-frequency 
circuits. In this case, the characteristics of the physical circuit 
change as the frequency goes up. The equivalent of resistance in 
alternating current circuits is called reactance. There are other 
simple equations that represent the effect of various circuit 
components (capacitors and inductors); you need to understand 
the effect of those components if you are going to see how the 
rules apply.

No matter how simple the rule, you will find that you and other 
designers make mistakes in applying these rules. Engineering 
is a human behavior, and we all make mistakes.  Sometimes 
we simply forget to check our work or to check what the rule is 
telling us.

We forget to check whether the strength of the material used 
in a part matches the expected stress applied to that material 
by a normal human being.  Then we forget to check whether 
some users might be on the outer edge, capable of super-human 
strength (football players, body-builders, teenagers, or angry 
spouses).
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There are some good methods to keep you from forgetting the 
rules when you are doing designs: You can develop simple 
checklists and you can hold design reviews.

Simply caring about your work and about the needs of other 
people can make a big difference in the quality of an outgoing 
product. If you design a brilliant product but it is just too difficult 
for the folks on the factory floor to assemble, then your customer 
will never get to experience the smart and creative product you 
intended. Instead, they are likely to receive a pile of parts that 
don’t really go together right. This is how they will think of your 
product and ultimately how they will see you as its designer. 
Nice idea, but it was a pile of junk. Likewise, if you design a car 
that attempts to pull kilowatts of electricity from a 1.5V AAA 
carbon-zinc dry cell, then you are breaking the rules and your 
product was a bad idea from the start.

You study the rules in school. You teach yourself the rules when 
you take on a new subject outside of formal training. The rules 
for your special skill might have been developed over tens or 
hundreds or thousands of years, or might be new and changing 
at the speed of the Internet. You have to determine the special 
requirements of your own special skill.  Do you need to be 
constantly learning new rules? Or can you stick with some basics 
that are unlikely to change during your career? I cannot answer 
those questions for you, but I think everybody has a sense of the 
pace of change in their own field of interest.

Can you write down a short list of the rules for your skill? My 
high-school physics teacher taught the “blank sheet” method of 
studying. Take out a blank sheet of paper. Write down the things 
you should know at this point in time. Go back and compare 
them to the important things in your textbooks and notes. Did 
you miss anything? Repeat the process until the answer is no!

Okay, you are going to scream at me and say, “Hey, I can’t write 
down a complete summary of 10 to 20 years of education and 
experience on a single sheet of paper!” True, but I’ll bet that the 
best engineers you know can do a pretty decent job of it, without 



An Engineer’s Guide to Solving Problems

56

looking up a single reference. Maybe you don’t remember the 
derating formula for a given brand of electrolytic capacitors, but 
you should have a pretty good idea of what terms it includes and 
where to find that formula in the literature.

And that is the big secret here: You don’t always need to know 
every last detail, but you must have a pretty good idea of what 
the rules mean and generally how those details will fit together. 
You need an intuitive grasp of the rules: “When this thing gets 
bigger, then this other thing gets bigger too.”

Constraints
There is a very special set of rules that you must apply to your 
problem. Unfortunately, these rules often have almost nothing to 
do with the problem itself. Even so you are commanded to treat 
them as if they were primary relationships between your known 
and unknown items. We call these special rules constraints.

A dictionary might define a constraint as a limitation or 
restriction. That definition works pretty well in this context. Your 
choices for solution are limited; your options for improvement 
are restricted by various constraints imposed on you. Some of 
these constraints might come directly from customers; some are 
imposed by management as part of doing business. Sometimes, 
people have constraints imposed by their own beliefs.

In any case, it is important that you list the constraints in your 
problem-solving documentation. If management says, “We must 
have a solution by the 15th of the month,” or “We must have 
a solution by tomorrow,” you cannot ignore that input.  That 
fact (or belief) will limit the choices you can make in pursuing 
solutions. You cannot start a run of experiments that will take 
two weeks if the answer is needed by tomorrow.

Sometimes, the constraint is economic: “Your fix to this problem 
must not create more than 5% increase in direct component 
costs.” Or maybe, “You can have only three engineers work on 
this problem.” Alternatively, the constraint might be cosmetic, 



What Are the Rules?

57

such as dictating the color, appearance, or surface finish of a 
product.

Constraints can also be completely arbitrary: “The product 
must be smaller than X by Y by Z millimeters.” Just because a 
constraint is arbitrary does not mean there is not a good reason 
for the constraint, however.  For example, a mobile phone needs 
to fit in a pocket or be held by a normal human hand.

Occasionally, you have hidden constraints.  There is nothing 
more damaging to a product’s development than finding out 
late in the project that nobody told you about some key critical 
requirement.

The Three Factors
There is an old joke (or maybe I should say truth) about project 
management. All projects involve three factors—time, money, 
and results—but you can only control two.  (Some people use 
other words for the same concepts—for example, schedule, cost, 
and quality.)

Projects are like balloons.  As you squeeze on one end, the 
balloon swells out in the other direction.  Businesses involve 
the perpetual effort to control all three factors. No business can 
ever completely succeed at this effort, but businesses can try to 
minimize the bulging in one factor by releasing a little pressure 
in the other factors.

We can represent this graphically in a figure of a triangle with 
balls at the vertices.  Each ball represents one of the three 
factors (time, money, results). You can think of them as balloons 
connected together by hollow tubes. As you squeeze one ball to 
shrink its size, the air is forced into the other ones, causing them 
to increase their size.
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Figure 6-1: The Three Factors of an Project

Your� boss� has� two� of� these� balls� fi�rmly� in� his� grasp� and� is�
squeezing�as�hard�as�he�can��You�know�this�because� they�are�
your�balls�he�is�squeezing��

A� given� constraint� typically� applies� to� only� one� of� the� three�
factors��It�is�often�your�job�to�minimize�the�damage�to�the�other�
factors�while�applying�the�constraint�to�your�project�or�product��
For�example,�the�boss�might�ask�you�to�add�a�feature�(improve�
the� results)� without� adding� too� much� cost� or� delaying� the�
schedule��Alternatively,�the�boss�might�ask�you�to�speed�up�the�
development,� but� still� include�all� the� features�without�adding�
cost��Or�the�boss�might�ask�you�to�reduce�the�product�cost,�but�
still�meet�all�the�requirements�and�schedule�

After�the�fi�rst�edition�of�this�book�was�released,�I�was�staring�at�
this�fi�gure�and�pondering�the�constraints�we�all�face�in�various�
designs���Suddenly�a�strange�idea�jumped�into�my�thoughts�and�
simply�would�not�go�away���There�are�four�primary�constraints�
in�every�project,�not�three���That�makes�the�constraint�triangle�
into�a�constraint�pyramid—with�triangular�sides�on�each�face���
What�is�this�new�constraint,�you�ask?��People�

Money

Results

MoneyTime
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Results

MoneyTime

People

Figure 6-2: The Four Factors of an Project

I�put�People�at�the�top�of�my�constraint�pyramid�for�a�very�specifi�c�
reason�� � I� believe� that� this� is� the� most� important� constraint�
among�the�otherwise�equal�limits���Of�course�you�can�view�the�
pyramid� from�any�angle,� so�People�might�not�be�at� the� top�of�
your�pyramid—but�I�believe�they�should�be�there�

There� might� be� some� of� you� now� saying,� “Oh� ‘people’� is� just�
something� you� get� by� spending� money,� so� you� really� don’t�
need� a� separate� constraint� there�”� � I� cannot� accept� that,� and�
let�me�share�why�I�believe�that�People�are�an�independent�and�
overwhelmingly�important�factor�

Is� there�any�amount�of�money�that�would�have� induced�Steve�
Jobs�to�leave�Apple�and�go�to�work�for�Microsoft?��No,�of�course�
that�would�not�have�happened,�even�though�there�was�a�point�
in�time�when�Steve�Jobs�had�just�been�pushed�out�of�Apple�and�
Microsoft�had�plenty�of�money�to�offer���Steve�Jobs�working�at�
Microsoft�just�was�never�going�to�happen�
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Likewise, there are many, many people out there looking for 
work (or not looking for work) that you would never hire to work 
on your project.  They might be perfectly suited for a given job, 
but they are not the right fit for your team.

This is why so many management books and articles make a big 
deal out of hiring and firing.  You must have the right people for 
your situation.

Having spent a lot of time studying this analogy and diagram, 
I realized that there is one more fairly subtle note that makes 
the concept work.   The balloon I call “results” should perhaps 
be called “bad results” and is really 1 divided by the value of 
Quality.  Mathematically, it might be written:

This gives you some interesting consequences.  Bad Results can 
grow to a huge value as Quality approaches zero.   As Quality 
gets very, very big, the value of Bad Results approaches zero, 
but never quite gets there.  

A wise Japanese manager once defined Quality as “anything that 
irritates the customer, other than price.”  I have often said that 
this definition is really saying the absence of quality is anything 
that irritates the customer, other than price, but today I think 
my reciprocal expression is really more appropriate.

Now our balloon and air-tube analogy really starts to work.  If we 
put the squeeze on money, our (bad) results swell up and maybe 
our schedule (time) starts to grow.  The same thing is true if we 
squeeze down on the Results (bad results) to get better quality 
in our project.  Squeezing bad results to get better quality might 
require additional time, money, or more (or different) people.
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You can run through lots of different scenarios like this, all with 
similar outcomes.  If you squeeze on the People side, you often 
have fewer (or the wrong) people trying to accomplish the project.  
Schedules can expand and more bad results (lower quality) will 
be the consequence.

There is an underlying assumption that is exposed by this 
discussion.  A given project with a defined set of goals will have a 
fixed “size” for its People-Time-Money-Results constraint system.  
It is certainly true that large organizations will sometimes have 
additional capacity available to throw at a project.  This means 
they can endure rapid, short-term increases in People and 
Money without much impact.   However, most customers have 
limited flexibility in their project goals (schedule, price, quality) 
and therefore the pressure is ultimately applied to people to cure 
problems in the other constraints.

Yep, you are getting squeezed.

Maybe you can meet the challenges handed you. When a real 
technical problem is overlaid by a web of constraints, a project 
is at its greatest risk of failure. Experienced engineers will tell 
you that the one thing most designs cannot withstand is the late 
arrival of new constraints.

You cannot ignore constraints. They must be added to the list 
of requirements for your product or project. They will be part of 
your response to “what are the rules” that apply to your problem.



An Engineer’s Guide to Solving Problems

62

Changing the Rules Changes the Result
8 Imagine asking various people a simple question: “What is 
2 plus 2?”

A child will quickly and confidently reply, “4.”

You ask an engineer, and he will say something like, “Well, 
assuming some small delta in the measurement value of our 
inputs, the answer will be approximately 4, plus or minus 
some variation based on the accuracy of those inputs and the 
tolerances in the addition engine.”

You ask a Wall Street banker and he will say, “Are you buying 
or selling? Minus our commission, the answer is definitely a 
lot less than 4. Of course you could build that markup into the 
transaction.”

You ask an accountant, and she will ask, “Is that on a cash or 
accrual basis? How soon do you have to pay the invoice? Is this 
a taxable transaction?”

Finally, you ask a lawyer. He will look left, then look right, then 
close the door and look at you through narrowed eyes and ask, 
“What do you want the answer to be?”

What are the rules?

1.	 The basic science behind a system provides the rules.

2.	 Many problems come from violating the most basic rules.

3.	 Constraints are special rules imposed by the goals of each 
project.

4.	 All projects include the four basic constraints of People, 
Time, Money, and Results.
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What Don’t You Know?

“...there are known knowns; there are things we know we know. 
We also know there are known unknowns; that is to say we know 
there are some things we do not know. But there are also unknown 
unknowns -- the ones we don’t know we don’t know.” Donald 
Rumsfeld, 2002 Press Briefing1

When you first start working on a particular problem or on 
something you have never seen before, you might find that 
almost everything falls into the general heading of “stuff you 
don’t know.” This is partly the reason so few people seem to be 
good troubleshooters.  They quickly become overwhelmed with 
the stuff they don’t know and despair of ever being able learn 
enough to fix this problem, let alone master a new subject. There 
often is a lot of pressure (from management, from customers, 
from family, from friends) to deliver a solution quickly. “I need 
it now!”

The thing you absolutely must do at this stage is make a short 
list of the relevant things you already know you don’t know. 
Note the word “relevant.” If you are investigating why a moving 
plastic part is breaking in all of your samples of a new product, 
you probably don’t care if one of the things you don’t know is how 
to bake chocolate-chip cookies.  On the other hand, chocolate-
chip cookies are delicious and can sometimes be used to convince 
other people to share their knowledge and wisdom with you. If 
you think you will need to bake some chocolate-chip cookies to 
get some key piece of information, then that can go on your list 
of things you don’t know. Otherwise, it stays off of the list.

Brainstorming without Jumping to Conclusions
At this point, I need to talk some about the difference between 
brainstorming and jumping to conclusions. 

Brainstorming is when you make some educated guesses about 
the kinds of things that might be causing the bad (undesired) 
behavior in the system you are trying to debug. Jumping to a 
conclusion is when you say in advance that X is the cause of 
1 http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636
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problem Y.  By “in advance,” I mean you are making such a 
statement without reliable, repeatable, and reasonable proof of 
this cause-and-effect statement.  In other words, jumping to a 
conclusion is when you suddenly and arbitrarily decide that one 
of your brainstorming ideas must be the correct answer.

In a brainstorming exercise, you can write down a list of things 
that you think might be the cause or might at least be closely 
related to the cause of the problem. 

Jumping to a conclusion is when you pick a single possible source 
of the problem and fixate on that while excluding investigation 
of other things you don’t know.

So if you are trying to fix a basic gasoline internal combustion 
engine, you might brainstorm that the problem could be in one 
of these areas:
●● Fuel flow
●● Air flow
●● No spark
●● Clogged exhaust

Each of these general areas will lead you to a list of things you 
do not know (yet) about the problem. For example, is fuel getting 
into the combustion chamber? Is the air filter blocked? Is too 
much air leaking in from unexpected places? Is the electric source 
for the spark functioning? Is the spark plug shorted to ground? 
Is the spark plug worn out? Is the spark-plug wire broken? Is the 
exhaust system clogged? Are the intake or exhaust valves stuck 
open or stuck closed or damaged in some way?

Jumping to a conclusion would be if you suddenly said, “It has 
to be the fuel flow. Forget all of that other stuff; just look at the 
fuel flow.” You could just as easily have become fixated on the 
spark system. “It must be the spark plugs. Let’s only work on the 
spark plugs.” It sounds pretty dumb when you write it that way, 
but we all fall victim to jumping to a conclusion sooner or later. 
Unfortunately it is usually sooner.
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Don’t worry if you don’t really know much about internal-
combustion engines or the terms I have used here. This 
is just an example. I could make up a huge list of other 
examples from nearly any field. But I like this example 
because most people have at least some exposure to cars 
and (like me) a vague understanding of how engines work. 

The best part of this example is that it shows how a list of general 
functionality (things you know) can lead to a bunch of questions 
(things you don’t know) that are actually pretty easy to find out. 
You can check the cylinders for unburned fuel (wetness). You 
can simply look at the air filter or the valves or the spark plug to 
see if they meet your understanding of how they should appear. 
Any unusual appearance might give you a clue for further 
investigation or might tell you enough to lead directly to a fix.

I really just want to convey the concept of brainstorming a list 
of things you don’t know and then turning that into an action 
list.  The investigation of each item in that action list should 
eventually lead you to enough information to actually solve the 
problem. However, this part of the process might not get you to 
success yet. You might not be good enough at listing all of the 
aspects of the problem to see that there is something else you 
don’t know.

So here is a question: Do you need to find out or solve every 
single thing in your “things I don’t know” list? My answer is 
absolutely, definitely, maybe yes, maybe no.  The goal of your 
problem-solving exercise will vary with the problem itself.

Let’s say the problem you are trying to solve is extremely urgent. 
For example, the airplane you are piloting is diving toward the 
ground and the propeller has stopped spinning.  Perhaps the 
highest priority of the debug process will be to achieve some kind 
of semi-level glide path and attempt to survive the intersection 
of plane and earth. 
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There will (or won’t) be plenty of time later to tear down the 
engines, fuel-delivery path, and control systems. 

If you don’t fix that first issue (the dive), the remaining root 
causes and solutions will be somewhat unimportant to you and 
your passengers.

On the other hand, if you are designing a high-volume consumer-
electronic product, you might ask yourself, “Do I really want to 
be shipping a product with circuit sections that nobody ever 
got around to testing and debugging?” In other words, a well-
designed product should not have any unresolved “things you 
don’t know.”

	 What Don’t You Know?

•	 Brainstorm to create lists of things you don’t know (yet).

•	 Prioritize these items to make efficient use of your time.

•	 Do not fixate on any one item. This is jumping-to-a-
conclusion.  Such behavior is immensely damaging to a 
good debug effort.

•	 Include this list in your reports.   As you discover the 
answers to things you don’t know, you can move them 
into your list of things you do know.

•	 Don’t be afraid to add new items to the Things You Know 
and Things You Don’t Know lists as you gain knowledge 
about the problem.
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Finding the stuff you don’t know

Let’s do a quick brainstorming list of some of the ways you can 
find out the things you don’t know about some problem that you 
are trying to solve:
●● Derive some knowledge from first principles.
●● Ask an expert.
●● Look it up on the Web.
●● Look it up in a book or magazine.
●● Use your basic senses to: see, hear, smell, touch, and taste.
●● Conduct some experiments or tests to prove an idea.
●● Collect some data from tests or experiments.

That’s a pretty good list. You have probably done some problem-
solving using all of these methods, except perhaps the first one 
in the list. Keep in mind there might still be other great methods 
that I have not listed. I love hearing stories about other ways 
that people have found to uncover the “stuff they do not know 
(yet).” Let’s work our way through this list.

Derive Some Knowledge from First Principles
Although we all wish we were Einstein-level smart, there are not 
so many of us who can solve a problem simply by retreating to a 
quiet room and applying massive brain power and mathematics. 
That is not to say that you should not try, nor does it mean that 
you should ignore the idea of working your way up from basic 
principles toward an understanding of a more complex problem. 
Remember that those basic principles should already be in your 
list of things you know.

Ask an Expert
This is often the most expedient solution, especially when you 
are less experienced and work in a larger team environment. 
You simply find somebody with more experience or knowledge 
than you and ask him for an opinion. I have no doubt that every 
single person can think of a situation in which they have solved 
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a problem (big or small) very quickly just by asking the right 
person a few questions about the topic. (Of course, instead of a 
quick answer, you might get told a story, like “The Dog Barks 
When the Phone Rings.” The story might help or it might just 
leave you scratching your head.)

The expert could give you a few comments and then say, “Let 
me think about that for a while.” Sometimes, that means he 
sincerely wants a little space to focus and think about your 
problem. Other times, saying this is just an excuse to make you 
go away and leave him alone. (Or maybe it is a little of both.)

Sometimes, the expert will admit that he does not have the right 
answer at his fingertips, but will give you several pointers to 
resources that he would check first. Indeed, the answer might be 
nothing more than hints or weak suggestions. The expert might 
also suggest a list of questions or experiments that you should 
try. This behavior is very much an exercise in brainstorming. 
They are providing educated guesses, but leaving the hard part 
(investigation) to you.

Larger companies are filled with internal experts.  Smaller 
companies sometimes have to reach outside to get expert help. 
Obvious candidates for experts are people whose knowledge 
and wisdom you respect: former coworkers or bosses, former 
classmates, experts at your current component vendors, and 
finally, outside consultants.

There are some cautions to be applied here. If you ask multiple 
experts, you might find yourself in the position of needing to 
ignore the advice of one or more. This can lead to awkward or 
difficult conversations if one of your experts follows up later 
and asks you if his advice solved the problem. The safe answer 
should always be, “Your suggestions were extremely helpful! 
Thank you!” If he tries to pin you down on specifics, you can say 
that while his comments helped send you in the right direction, 
the solution ultimately turned out to be something else.

A really good expert is not asking you for the outcome just 



Finding what you don’t know

69

because he wants to stroke his ego.  (“I was right!”) The best 
experts relentlessly pursue new knowledge and especially new 
problems and solutions. They see this as preparation for their 
next problem. The good experts will come back and ask you what 
you found. Of course, they hope that their advice helped, but 
mostly they just seem to get a good feeling when problems get 
solved.

If all else fails, you can spend some hard cash to hire an outside 
consultant. 

A consultant is someone who borrows your watch to tell 
you the time.  (And then sends you an invoice.)

There is a lot of truth in that saying, but you should not be afraid 
to reach out for help when it is absolutely necessary. Be sure 
to carefully define what you expect to receive from an outside 
consultant, when you expect to receive it, what it will cost you 
per hour, and the maximum amount you are willing to spend on 
this consultation.

I have another joke that applies here too: An expert is 
anybody more than 25 miles from home.

Even though asking an expert is fast and easy, it has one big 
drawback if that expert is in the same field as you: It means you 
are not exercising the mental muscles that you need to develop 
to become an expert problem solver yourself.

Please use the asking-the-expert approach with care.  If you 
have no other choice due to time or other constraints, challenge 
yourself by writing in advance a private list of the things you 
think the expert might tell you. When you find that you are 
consistently predicting experts’ answers, you probably don’t 
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need to use their help as your primary starting point.

Now I am going to immediately contradict myself—sort of. If the 
expert is in a different field from you, it is always a good idea to 
consult and listen closely to an expert’s advice. Nobody can cover 
all subjects. As much time as you have spent learning your topics, 
other experts have spent learning their topics. Spend some of 
your time figuring out whose advice you trust in other areas. 
Use their advice, but don’t abuse their time and generosity.

Look It Up on the Web
Of all the sources of information, this one can be the most 
hazardous. There are times that I am convinced that the Web 
has become the “source of all knowledge” for too many people. 
I am also convinced that at least 80% of the raw information 
commonly available on the Internet is absolutely wrong. When 
you are collecting information from the Web, be sure to always 
keep track of the source of information and your general 
confidence in that source.

I generally use the Web for information gathering in an extremely 
cautious mode.  Vendor datasheets and application notes are 
typically pretty good and usually reliable when published on 
the vendor’s own pages. Some secondary reference sites claim to 
offer extensive libraries of datasheets from other vendors. I am 
always quite cautious about such secondary sites.  Authorized 
distributors typically maintain reasonably good datasheet 
libraries, but it is best to gather your information from primary 
sources.

My BS detector goes off the scale when reading user forums 
and enthusiast Web sites.  Anyone, including the bottom 80% 
on an intelligence scale, can contribute to public forums. Of the 
remaining 20%, on any given day, some will make silly mistakes 
and others will be mentally absent or just in a bad mood. That 
translates into about 90+% of the information being wrong, bad, 
poor, or sadly misguided. Can you find useful information on the 
Internet? Yes, but it takes a very careful eye and extra effort 
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confirming any information from sources like this.

Some engineers use Wikipedia as a primary source. I generally 
find it a good place to get a very rough overview of less-familiar 
topics, but then I must do much more confirmation research to 
be sure that I have not been completely misled by some amateur 
posing as an authority.

The World Wide Web brings us information at nearly the speed 
of light.  It can make us appear brilliant and knowledgeable 
incredibly quickly. Unfortunately, the Web can make us stupid 
at exactly the same speed.

Look It Up in a Book or Magazine
The Web is an easy place to plant misinformation by ignorance, 
malice, or accident.  Publishing “bad” books or magazines 
represents much more wasted effort and cost, especially if that 
information is subsequently disproven or becomes generally 
accepted as unreliable.  For this reason, your local university, 
public, or corporate library is often one of the best places to find 
answers to what you don’t know.

The best problem solvers with whom I have worked all made 
an effort to maintain a high-quality personal library of books 
and magazine articles. Often, these are in neatly organized file 
systems and bookshelves. These problem solvers will religiously 
skim through trade magazines and then copy or download 
electronic copies of key articles they find interesting.  Therein 
we find another clue about good problem solvers: They are 
consistently curious about a wide range of topics and relentlessly 
collect and sort knowledge that meets some arbitrary standard 
of “good to know.”

Use Your Basic Senses
The next method you can use to find out the things you don’t 
know about a problem is to simply use your normal powers of 
observation. In other words, you can look at the problem. Arthur 
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Conan Doyle’s character Sherlock Holmes solved most of his 
mysteries by using keen observation and encyclopedic knowledge 
and then by applying extraordinary deductive reasoning. Holmes 
is astonishing because most people are incapable of matching 
his skills in any of these areas, let alone all three.

Even without emulating the ultimate detective, you can apply 
some of the same techniques. Ask yourself these questions:

●● What did you see just before, during, and just after the 
failure?

●● What did you hear just before, during, and just after the 
failure?

●● What did you smell just before, during, and just after the 
failure?

●● What did you taste just before, during, and just after the 
failure?

●● What did you feel just before, during, and just after the 
failure?

I will discuss each of these, but it is important to note that some 
or all of these might not apply to your problem. On the other 
hand, you might be surprised at how often several of these 
eventually are found to be significant to your problem. Keep an 
open mind and open your senses—but don’t jump to any quick 
conclusions without lots of evidence.

No disrespect is intended here for people who have a specific 
limitation (for example, vision or hearing impairment). 
In such cases, I suggest you engage in teamwork with 
someone who could supplement your observations in 
those specific areas to be sure that no observations are 
missed as you collect further information.
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What Did You See?
I don’t know if there is a whole lot of explanation needed here. 
Obviously, you probably don’t need to record the presence of 
every item in your field of vision.  You need to pay attention 
to the relevant things you see but ignore those things that 
clearly do not have anything to do with your problem. If there is 
always a bright flash of light a few milliseconds before a failure, 
then I believe it would be worth noting that fact. However, if 
the system is constantly flashing bright lights and they only 
occasionally coincide with the failure, then at best you might 
note the apparent lack of coincidence between the two.

What Did You Hear?
Surprisingly, many people do not find this observation as easy or 
intuitive as the previous one—what they saw. Sometimes this is 
because they were too busy talking during the event. Sometimes 
they focus on watching the system and maybe forget to listen as 
well. Perhaps a lack of training plays an important role.

Whatever the reason, you will want to avoid this pitfall and start 
listening to your systems. It is astonishing how much listening 
can reveal about the workings or failure of a mechanical or 
electromechanical system. My wife claims that I have several 
times accurately predicted the failure of our furnace and air-
conditioning system when I have asked her, “Hey, does that 
sound different to you?”

8 Once upon a time, an employee we will call Brad, at a 
company I will cleverly call “The Vendor,” received a phone call 
from a customer. This customer was having a problem with an 
industrial control computer that was failing to boot up properly 
from a floppy disk. The Vendor had provided some of the circuit 
boards, but had not built the entire system. 

After collecting some basic information, Brad finally asked the 
customer to describe the sound the drive made during boot. The 
customer struggled to describe the sounds accurately, so Brad 
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suggested that he hold the telephone handset up close to the 
floppy disk drive and then power up the system.

This is what Brad heard: ZZZZzzzT! zzzZZZZT! 
Then, <medium pause> THUNK! <medium pause> THUNK! 
<medium pause> THUNK!

Brad knew what the floppy driver software normally did during 
boot. He had previously written some of that driver code. Those 
noises told him a very complete story. 

The first falling note was the driver causing the heads to seek 
back to track 0. During boot, this was an automatic behavior to 
ensure that the firmware knew the current location of the disk 
drive read/write heads. Then, after some setup and housekeeping, 
the drive would be told to seek out to the last four cylinders 
of the disk, where the operating-system code was stored. This 
was represented by the rising tone of rapid steps. Both sides of 
the disk were then read for each of the last four cylinders. The 
three THUNK sounds represented the heads stepping from one 
cylinder (track) to the next.

If the floppy-disk controller integrated circuit (IC) detected 
errors, the driver had a pattern of relocating the correct track 
that ran something like this:

1.	 Step to the track and read sector(s).
2.	 If there are location or data errors, step in and then 

step out by one track. Try reading again.
3.	 If location or data errors, step out and then step in by 

one track. Try reading again.
4.	 If there are still errors, seek to track zero to establish 

a known head position.
5.	 Repeat step 1, seeking and reading, two more times.
6.	 If there are still errors, report them.

This error-recovery pattern made a very distinctive clicking 
sound as the heads moved in and out over the desired data 
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track. But Brad was not hearing this repetitive clicking sound 
of retries.

The sounds were telling Brad that the floppy-disk controller 
was doing everything normally.  No errors were reported on 
the console terminal. Yet the operating system was not booting 
up. In this case, the answer was surprisingly straightforward. 
Because the floppy-disk controller was not detecting errors, 
Brad had good evidence that the diskette was okay and that the 
controller was successfully reading the boot image.

For some reason, however, the operating system boot image was 
not showing up in the memory. Brad speculated that the memory 
might be in write-protect mode. Write protect was one of the 
few reasons that memory write cycles might fail. The memory 
could be write protected if the main +5 V rail on the system 
backplane were set too low. The customer adjusted the power-
supply voltage to a proper value and the problem disappeared.

The critical clue in solving this problem was provided by those 
noises made by the floppy-disk drive.  They were the normal 
noises, which eliminated almost all of the rest of the system as 
candidates for the failure.

What Did You Smell? 
Occasionally (though not often), a system failure is associated 
with a smell. Most typically, this might be a “hot” smell or even 
a burning odor. Such smells might represent frictional heating 
in a mechanical system or a circuit overload in an electrical 
system. In extreme cases, these smells can be overwhelming, but 
the point of failure will usually become obvious due to associated 
smoke, melting, color change, or some other sensory input (e.g., 
the system feels hot).

What Did You Taste?
I have to admit that taste is an unusual sense to include in 
this list. Most of the time, we don’t try to taste mechanical or 
electrical systems or devices to see if they show some kind of 
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change. 

My wife Debbie once walked into a service shop after we had 
major repairs on the transmission of our car. While she was 
paying the bill, the mechanic stopped by and explained the 
various repairs that had been required. As he was finishing his 
explanation, he commented that he knew we had one specific 
problem after tasting the transmission fluid. She stared at him, 
open-mouthed, trying to find words to express her astonishment.

He quickly realized what had caught her notice and said, “Hey, 
I don’t drink it. I just put a little drop on my tongue and then 
spit it out. It is amazing how much you can tell by the taste.” I 
guess I am glad that I am an electrical guy. We generally try to 
keep the gear out of our mouths. But I did actually trust that 
auto repairman, and he took care of many vehicles for us until 
he finally retired.

He had a good point, too. Our tongues and noses are amazingly 
sensitive chemical detectors. We should not discount or fail to 
document the evidence they provide.  However, I insist that 
you first consider your personal safety in any experiments or 
observations. You don’t need to lick an electric fence to find out 
if it is turned on.

How Did the System Feel to Your Touch? 
Was it hotter than normal, colder than normal, or just normal? 
Do all of the failing samples “feel” different in some way? Some 
surfaces might be rough or smooth or textured. Feeling unusual 
temperatures or a wet or greasy area might also be clues.

In his book Troubleshooting Analog Circuits, Robert A. Pease 
attributed some brilliant advice to Tom Milligan, his former 
coworker: “When you are taking data, if you see something 
funny, record amount of funny.”2 Do not forget this important 
advice!

2Troubleshooting Analog Circuits, Robert A.  Pease, page 5, 
©1991 by Butterworth-Heinemann. Reprinted by permission of 
Elsevier Limited.
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Encountering the Unknown Unknowns
Remember that you are collecting clues, and any odd or 
unexpected behavior of a system is most definitely a clue. You 
might not understand the clue immediately, and maybe you will 
never perfectly understand it, but put it in your notes.

This is such an important concept, I want to restate it in another 
way. Many times, when you are doing experiments (observations, 
measurements, tests) while trying to answer something in your 
“things you don’t know” list, you will find that there is something 
else going on. There is something you previously did not know 
that you did not know! For that reason, it did not appear in your 
list of things you know, your list of rules, or your list of things you 
don’t know. If you are not absolutely meticulous about recording 
your test results, this critical information will be lost.

Experiments to Prove an Idea
You sometimes set up an experiment to prove an idea that you 
have already formed about the behavior of a system. You do a 
test run, collect some information, and then make one specific 
change to the system. If you understand the system very well, 
you are able to predict the outcome of the experiment.

Sometimes you will be surprised by the outcome; sometimes you 
will confirm your previous belief. Both results are equally valid. 
In either case, you must write down what you did and what you 
found.

Experiments to Collect Information
Sometimes you will run some tests simply to collect information 
about the behavior of the system.  In such cases, you are not 
trying to prove or disprove a theory. You are just taking a look 
and trying to see if something surprising, unexpected, or strange 
jumps out of the data.
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Is There a Difference Between a Test and An 
Experiment?
I sometimes fall into the habit of interchanging the words test 
and experiment in casual communication. A more careful speaker 
would be sure to separate these concepts. My best attempt at 
differentiating the two would be this:

A test is an action you take where you think you know what 
result will be observed.

An experiment is a test where you are not really sure what result 
will be observed.

A surprising or unexpected result for a test or an experiment can 
be extremely helpful in understanding the behavior of the system 
and thus help you solve a problem with the system. Likewise, 
test results within your nominal expectation can reassure you 
that some parts of your system are working as expected.  Your 
attention can then go to other areas.

In the next chapter we will journey more deeply into the subject 
of tests and experiments.
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How Do you Find out the Stuff you don’t Know?

1.	 Derive knowledge from First Principles

2.	 Ask an Expert

3.	 Look it up on the web (DANGER!)

4.	 Look it up in a book or magazine

5.	 Observe the problem with your own senses

a.	 See it
b.	 Hear it
c.	 Smell it
d.	 Touch it
e.	 Taste it

6.	 Do some experiments or tests to prove an idea

7.	 Do some experiments to collect information
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It is easy to miss something obvious.
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Experiments

There are several reasons we do experiments: to prove an idea, 
to find a specific unknown value, or to simply collect more 
information. I am always surprised at how easy it is to confuse 
these reasons for experiments and suddenly branch off in the 
wrong direction.

Do Experiments or Tests to Prove an Idea
In this first case, you conduct one or more experiments or tests 
to specifically prove an idea or to fill in one specific unknown 
value.  You will probably change one parameter during the 
experiment to see the effect on the system. This kind of testing is 
often extremely focused: You have a clue or a hunch that you are 
following. In some cases, you could consider each observation to 
be a separate experiment. In other words, you make the system 
do something and then you look (measure, monitor, or capture) 
at point A. You then repeat the experiment looking at points B, 
C, D, and so on. You might call these “debug experiments” or 
“troubleshooting experiments.” 

When doing any sequence of experiments, be absolutely sure that 
you change only one thing at a time. It is incredibly tempting to 
throw a bunch of changes at a problem. You might be getting 
tired. You might be under a lot of pressure from management. 
But do not make this mistake! (Sadly, we all sometimes get 
impatient and fail to follow this advice.)

If you modify more than one thing between experiments, you do 
not know which modification caused any change in the results! 
Indeed, you cannot know this.  Yes, it is probably one of the 
things you changed, but which one?

Of all of the mistakes of problem solvers, I think changing 
more than one thing between experiments might be the 
second most common. The first most common mistake in 
any debug is poor record keeping, which also creates poor 
communication.
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The first and most basic kind of debug experiment is one you 
do simply to reproduce the problem report. Even if you are the 
source of the problem report, you might find yourself repeating 
some experiments (tests) just to be sure that the problem is 
repeatable and consistent with the setup you have documented.

Determine a Specific Value from Tests or Experiments
The next reason you might do a test is when you are trying to 
establish one specific value from your system. Maybe you want 
to know the temperature of one component, or the voltage or 
current at one node within a circuit. Perhaps you want to know 
some physical characteristic of a material.

Collecting Data from Tests or Experiments
The other reason people do experiments is simply to collect more 
information.  In this case, you probably don’t know where the 
data is going to take you. You don’t know if this data will prove 
anything specific. For some problems, the data might not even 
be useful when you are finished. But you often need to perform 
data-taking exercises like this simply to have enough statistical 
information to draw some conclusion(s) about the behavior of 
the system or problem.

You might take extra measurements or observations during 
this kind of experiment. Sometimes, having a wide variety of 
measurements before, during, and after a problem can give you 
enough clues to see what is going wrong. Some problems involve 
design tolerances. Until you have enough samples, you cannot 
tell that the problem exists or how often the problem occurs.

Not having a better name, I could call this type of 
exploration “statistical experiments.”

Let’s look at an example of a problem that required many 
experiments and lots of data collection.  Eventually, all the 
indications led to a single experiment, which failed to fix the 
problem. But the failure of that experiment told the investigator 
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he was looking at the right idea. We will call our investigator 
“Barry.”

8 Once upon a time, there was a long and painful 
investigation of some drop-test failures of a sophisticated 
communications device. The product manufacturer had internal 
standards for the height from which a packaged or unpackaged 
receiver should be able to withstand a direct drop onto a hard 
surface without damage that might cause the device to stop 
functioning.

Drop tests work something like this: A large and heavy steel 
platform is mounted such that it can be lifted to an arbitrary 
height.  A trip release then allows the platform to be pulled 
straight down by gravity toward a solid concrete floor.  These 
drops are generally done at heights of 1 to 2 meters.

These tests are not for the faint at heart. The impact produces 
a resounding BANG that can usually be heard and felt in every 
corner of the test building.  A typical test cycle might involve 
dropping each sample one or more times on each face of the 
product (six faces for a rectangular box).  The failure criteria 
might be that no more than zero or one product is allowed to fail 
from a batch of 100 samples. Doing even the minimum 600 test 
drops (6 faces × 1 drop × 100 samples) for one test cycle takes a 
lot of time. Some test setups allow dropping multiple products at 
one time, but some do not.

Drop tests are not silly or capricious.  Package handling in 
transportation hubs often incorporates conveyor systems with 
drop heights that can equal such test values. Let me say that 
again in a different way: Shipping your product with delivery 
company X can guarantee that your product will be dropped at 
least once from a significant height. That drop is built into the 
company’s conveyor system. The farther you ship a product, the 
higher the chance of hitting multiple or many different drops.

A few good bumps in the back of a truck can approximate similar 
shock impacts. Human handlers sometimes toss packages over 
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great distances and heights, not worrying about the potential 
damage or liability they are creating. Along a similar vein, have 
you ever dropped your cell phone? A well-designed product can 
withstand these stresses.

You can easily see that such a product test can be completed 
only after you have manufactured significant quantities 
of the product.  Preliminary testing can be done on smaller 
quantities of product, but that does not guarantee success for 
the final product. Unfortunately, testing that happens late in 
the development occurs when there is the least amount of time 
available for change or recovery from a failure.

Barry’s involvement in this project had been mostly advisory, 
with the electrical engineers reporting to him making minor 
changes to adapt this model to the needs of a new customer and 
then testing against any new requirements. Suddenly, the project 
meetings became dominated by increasingly long discussions 
between the mechanical and process engineers of some drop-
test failures in the factory.  Production start was imminent, 
but the failure rates were slightly beyond the allowable limit. 
International conference calls and continued debate began to fill 
up the team’s calendars.

It did not help that the design had been started in one design 
center and then finished in a second design center halfway 
around the world.  Surprisingly, though, there was no finger-
pointing—nobody saying, “Hey, this is your fault.” There were 
several basic ideas floating around, yet no measurable progress 
was being made toward a solution.

Barry casually suggested to a senior manager that the program 
manager was not getting much traction on this problem because 
he continued to listen to multiple conflicting inputs.  The 
program manager was frozen because he could not decide which 
interpretation of the problem was correct and therefore which 
possible solution should be pursued.  “At some point, you just 
need to assign a drop-test czar,” Barry said. “You need somebody 
to sort out the options and find a good debug path to chase.”
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“Good idea, Barry,” the manager replied. “You are it.”

“Wait, what?” Barry protested that he was absolutely the wrong 
guy to take this on because he knew less than nothing about 
mechanical design or the manufacturing processes. Barry was 
the electrical guy. He had no dog in this fight. A short flurry of 
emails later, Barry unhappily found himself officially designated 
as the drop-test czar.

During an extended conference call, the team collected a short 
list of possible causes. These were published back to the team 
and several specific experiments were to be conducted. By the 
next meeting, most of the work had been completed, but the 
team still did not have absolute evidence of a specific cause.

The first surprise for Barry was how responsibly and 
professionally every person on the team behaved. He initially 
had feared that a finger-pointing war might erupt, with each 
skill area blaming a different group for the problem. The opposite 
was the case. Each group seemed to feel the best explanation for 
the failure was attributable to their own skill.

The mechanical engineers were focused strongly on the amount 
of support for the printed circuit board (PCB) and how much 
the PCB would flex at the moment of impact. The PCB expert 
was worried about the fabrication of the PCB material.  The 
manufacturing-process expert was concerned that the solder 
process was to blame. Nobody was even remotely interested in 
blaming a different group for the problem.

Many significant experiments were run.  Materials and 
strengths were tested and verified. Failed units were X-rayed 
and disassembled. High-speed videography captured the flexing 
of the PCB at the instant of impact.

The net result was that everything seemed to be within normal 
parameters.  Yes, the mechanical design and PCB could have 
been a little more rigid, but they were well within the expected 
variation.
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The system-chip vendor was convinced that the device should 
withstand the expected stresses at the solder balls, even 
though this was a smaller ball size than in the previous device. 
Metallurgical testing confirmed the PCB and integrated circuit 
had the expected materials and no sign of oxidation.  The 
manufacturing location was sure that the solder process was 
optimized.  Nonetheless, a small but statistically significant 
number of samples had failed.  The failure analysis (not 
surprisingly) showed that the connections that were failing were 
at the locations where they would expect the most stress on the 
system-chip connections (solder balls) during a drop.

All of this information was again collected and reported back to 
the entire investigating team. And again, no strong consensus 
was reached. Barry was not showing much success as a drop-
test czar. Like the program manager, he had many inputs, but 
no conclusive proof.

One engineer shared an article written about a different design 
in which the team had ended up gluing the system chip to 
the main board after experiencing a somewhat similar shock/
vibration failure. Barry was intrigued by this solution. A small 
number of samples with glue were tested to extreme conditions 
with no observed failures.

There were many barriers to such a solution, however.  For 
one thing, the circuit board became irreparable after the glue 
was applied. This was not very appealing, because it was not 
unknown to have system IC failures after the first solder cycle or 
later, in the field. The economics of simply discarding all of those 
assemblies were not good. Also, the manufacturing line would 
quickly bog down waiting for the glue to set properly. Fast-cure 
or thermally cured glues were an option, but they introduced 
new manufacturing steps that were extremely difficult to control 
in production. The glue itself added cost, and new production 
machines would be needed to apply the glue. Schedule delays 
and added cost are never welcome near the end of a product’s 
development.
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With the production start date looming close on the calendar, 
Barry traveled to the factory with some mechanical and 
industrial engineers. The team reviewed everything they could 
find in the factory and had one more conference call with their 
process expert in the United States. The remote process expert 
carefully discussed the solder profiles and test charts. He then 
explained for Barry’s benefit some of the behavior that these 
solder processes can exhibit as the factory tuned temperature 
and duration parameters during the time the assembly spent in 
the reflow soldering oven. 

There were at least two bad things that could happen to the 
solder balls as the factory pushed or pulled the process in one 
direction or the other. In one case, the solder could fail to make 
a good connection if the heating were not complete enough. In 
the other direction, too much heat could create an undesirable 
crystallization or granularity in the material.

Temperature
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Figure 15-1: One Effect of Increasing Temperature
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Temperature
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Figure 15-2: A Different Effect of Increasing 
Temperature

There was no easy way to tell if the failure was happening due 
to one mode or the other. The two effects might have looked like 
a big letter U on a graph if you were able to chart failures from 
each effect on the vertical axis versus process parameter across 
the horizontal axis. It is best for the process to sit right at the 
intersection of the two effects, where the production should have 
minimum failures, but there was no easy way to know where 
they were sitting on that curve when they started.

Metallurgical and microscopic examination were ambiguous. 
The team was sure that certain solder joints were fracturing 
during the drop tests, but the root cause was still unclear.
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Figure 15-3: Combined Effects of Increasing Temperature

There was something the team could try.  They could build a 
statistically significant quantity of boards with the process 
pushed a little toward one side. If the drop-test results showed 
significant improvement, Barry would know that this was the 
direction he needed to push the process. If, on the other hand, 
the results became worse, he would know that they needed to 
push the process the other direction to get farther down in the 
failure curve.

There was only one catch: If he picked wrong the first time, 
those samples would have even poorer solder strength. A larger 
number of samples would be destroyed by the drop test and the 
entire batch would need to be discarded.

There were some tense moments with the team considering the 
economic risks. Once again, no clear consensus was reached.

This became the second surprise in the investigation: It suddenly 
was clear to Barry why it was so beneficial for somebody— 
anybody—to be the czar: The czar could make a decision that 
had an economic impact, which would have been very difficult 
for a person with normal direct-line budget responsibility.
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Barry made a completely arbitrary decision. He assumed that 
the process was sitting to this side, so they would push it that 
direction. If they were wrong, the failure rates would go up. If 
they had guessed correctly, the failure rates should go down and 
they would be done. The cost would not be small, but the team 
needed to know where they were and ultimately they needed a 
solution.

Tense hours passed as the production line was run through to 
final assembly. The next morning, the factory team started drop 
testing these new samples. Bad news traveled fast: The failure 
rate had doubled. But this was actually good news, because it 
meant that Barry’s experiment had told them something useful. 
He was just unlucky at guessing the right direction to push.

With some further conversation with the process expert, the 
factory pushed the process parameters the other direction and 
built another large batch. This time, the results were not only 
better than the previous batch, they were now well within the 
drop-test requirements. Barry finally had a solution.

Barry shared all of the thinking and results with the factory 
team. They agreed that he was not pushing the process outside 
of the allowable envelope, and they had some good ideas as to 
why the process parameters might be offset a little bit from 
where they expected. They did raise some concerns about the 
soldering performance of an unrelated part, but quickly agreed 
with Barry’s process expert that this specific new issue could be 
addressed by a small change in the solder-paste stencil. It was 
far more important to get the critical large system chip soldered 
correctly.

Long after this investigation concluded, it occurred to Barry that 
he actually had not collected enough evidence based on the first 
failed test to be absolutely sure that the team had completely 
understood the problem. What if their curve had been relatively 
flat in the region of the process setting? And what if they had 
not moved very far along the X axis? They might have seen no 
improvement!
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Worse yet, if they had jumped completely across the failure 
valley, they could have landed very far up the opposite failure 
mode curve, which equally would have explained the sudden 
increase in failures.

It became clear to Barry that he was relying on the experience 
and wisdom of his process expert and factory team. Both had 
a good sense of how far they could push the soldering process 
and see only a small change. They had the confidence in their 
knowledge of the difference between a small change, which would 
reveal the direction of the curve, and a bigger change, which 
might have leapt over the valley onto the second effect. It was 
important for Barry to trust the experts and equally important 
to finally settle on the expert whose advice he trusted most.

This story includes both types of debugging experiments.  In 
the beginning, the team tried lots of different tests and used 
a wide variety of brainstormed guesses to get clues about 
what failure modes to investigate.  Later, they did a carefully 
controlled experiment in which a single (and small) change was 
made to verify their understanding. The change was applied to 
a statistically significant number of samples. Most importantly, 
the failure of that experiment did not automatically mean that 
Barry was on the wrong track. It did mean that he had made 
one wrong guess about where they were starting, but that failed 
result gave the team a good idea to then push a little in the 
opposite direction.

Finally, this story demonstrates the importance of thinking 
through an experiment and anticipating the results before you 
get them. If you can predict the possible outcomes and assign 
meaning to each possibility, then you probably understand the 
problem well enough to begin solving.

Are Experiments Easy? No.
The information presented in this chapter represents the most 
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challenging part of problem solving, yet it is the part that most 
engineers believe they already know how to do. Let’s hope that 
is they are correct. Either way, everybody can work to improve 
their skills.

Note that I am again using the terms tests and experiments 
pretty much interchangeably here.  I previously suggested 
that a “test” is an experiment where you believe you know the 
outcome in advance. I am not sure it makes much difference. In 
either case, you might undertake a test (or an experiment) to 
try to disprove some idea. You also might do one or more tests 
(experiments) to simply collect a lot more information about a 
problem. Any test (or experiment) could involve making one or 
many measurements.

If you are taking several different measurements, you do not 
want the conditions under which those measurements are made 
to change. In other words, you want no variation in the system 
between measurements.  One way to achieve this is to have 
enough equipment to take all measurements simultaneously. 
If you don’t have that much equipment, or such measurements 
cannot be captured at exactly the same time, you should make 
an effort to understand how your system might be changing 
during the time between different measurements.

You will also do experiments in which you intentionally make 
one (and only one) change in the system to try to understand the 
effect of that change. Repeating the obvious, if you change more 
than one thing at a time, you will never know which thing you 
changed was the cause of any resulting change in behavior or 
measurement.

Finally, as you prepare your next experiment (or next test), 
you should be able to predict the outcome as your insight into 
the system improves.  When you have excellent agreement 
between your predictions and results, you probably have enough 
understanding to begin thinking about the root causes of your 
problem and the solutions you could apply.
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Experiments and Tests

1.	 Experiments can help disprove a specific idea.

2.	 Experiments rarely prove a theory, but can give you 
good evidence to support a theory.

3.	 Experiments can be done to collect lots of raw 
information.

4.	 Only change one variable at a time during any 
experiment. 

5.	 Try to predict the outcome of changes. When you 
have excellent agreement between prediction and 
outcome, you probably are gaining some insight into 
the problem.



                                                                                                                                                                                                .
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Debug by Division

There� is� a� special� strategy� that� is� usually� applied� to� locating�
problems�in�complex�systems��It�goes�by�many�names:�debug�by�
division,�divide�and�conquer,�and�binary�search��Whatever�you�
call�it,�the�bottom�line�is�that�you�want�to�organize�your�debug�
efforts�to�get�to�the�root�cause�(i�e�,�the�real�problem)�as�quickly�
as� possible—or� maybe� I� should� say� as� effi ciently� as� possible��
Sometimes,� going� faster� is� not� the� only� measure� of� success;�
indeed,�it�could�mean�that�important�steps�have�been�skipped�

The�key�strength�of�debug�by�division�is�the�same�as�any�binary�
sort�or�binary�search��You�reduce�the�number�of�steps�required�
to�the�nearest�power�of�2�required�to�represent�your�universe�of�
steps�or�stages� in�a�design��For�example,� if�you�have�a�design�
that�encompasses�1,000�blocks,�debug�by�division�should�let�you�
zero�in�on�the�problem�area�in�only�10�steps�(210�=�1,024)�

Let’s� look�at� an� electrical� circuit�design�example��Assume� the�
problem�has�been�reported�that�given�a�correct�input�signal,�the�
system�is�not�producing�any�valid�output�signal��If�you�have�a�
design�with�only�three�sequential�signal-processing�blocks�and�
the�output�does�not�match�your�expectation,�you�can�use�debug�
by�division�to�guide�your�probing�and�measuring�of� the�signal�
quality�at�various�points�in�the�circuit�

BLOCK
1

BLOCK
2

BLOCK
3

Input
Signal

Output
Signal

Test 
Point 

A

Test 
Point 

B

Test 
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C

Test 
Point 

D

Figure 13-1: General System Block Diagram

First,�verify�that�the�problem�report�is�accurate��In�other�words,�
with�a�proper�input�signal�at�test�point�A,�make�sure�the�signal�
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at test point D really is an invalid output signal as reported. 
Occasionally, you might find that the output signal at test point 
D is actually just fine. You would then need to determine why 
you are not reproducing the problem.

Assuming that you can reproduce the problem, you should then 
verify that the signal input is as you expect. You measure at 
point A.  If that incoming signal is incorrect, you probably do 
not need to debug anything in your circuit.  In other words, if 
the input signal is bad, then it would not matter what design 
you use after that point; the result would still not match your 
expectation.

The one exception to this is if your circuit is causing the otherwise 
good input signal to suddenly become bad. An example would be 
if you had too much input capacitance, which instantly filtered 
and rolled off high frequencies on the incoming signal. Likewise, 
a circuit with improper input impedance might cause signal 
distortion that cannot be fixed later in the design. When the 
input impedance does not match the feed circuit, some amount 
of the incoming energy is reflected.  This varies at different 
frequencies for the input signal. You can verify that the input 
signal is correct with an ideal load in place of your questionable 
circuit.

Now let’s assume that the input signal is fine, even with the 
sample circuit connected. In that case, you divide your system 
in half or, in the case of an odd number of blocks (for example, 
three blocks), you can choose to put your division point on either 
side of the center block. (It does not matter which side.) You then 
check the operation there.

●● If the signal is okay at that point, you again divide the 
remaining circuit toward the output where the signal has 
been declared “bad” in half and measure again. 

●● If the signal is not okay at that point, you divide the 
incoming path in half and measure there.

●● If you are down to a single block between good and bad 
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operation, you know that the failure is taking place at or 
inside that block.

If your design “reads” from left to right, and you have not yet 
found the problem, then you step to the right in halves until you 
observe the problem in your next divide-by-two measurement 
step. After you have found the problem, you step to the left in 
successively smaller halves until you no longer see the error.

A binary search is incredibly powerful in this way.  You can 
isolate a defect in a very large system in relatively few steps. 

Well…maybe. 

There are always exceptions. Take the example of five cascaded 
amplifiers (each stage feeds an amplified signal to the next 
stage), all running from a common power source. If that power 
supply fails, then the signal will not meet expectations at any of 
the intermediate steps. The problem in this case is not in any of 
those amplifier stages. If you had checked the power supply first, 
you would find the problem even faster than locating the trouble 
to the first amplifier stage and then debugging that individual 
amplifier.

Similar problems occur in digital circuits when a common clock 
signal is used to step each piece of sequential logic. If that clock 
is not running or is running at the wrong frequency, the circuit 
will never operate as expected.

For this reason, the best digital-circuit developers practice a 
mantra when debugging designs:

1.	 Power
2.	 Clock
3.	 Reset
4.	 Memory
5.	 I/O

If the power is bad, then nothing works. If the clock is missing, 
then nothing will work. If the clock is too fast or too slow, then 
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maybe nothing will work or maybe some things will act strangely. 
If the reset is held active, then nothing will work, although the 
power and clock will measure correctly. If there is noise on the 
reset, then the system will behave badly.  If the non-volatile 
memory is bad, then the system will not boot.  If the volatile 
memory is bad, then the system might only partially boot. If the 
I/O is bad, the system will not be able to fully function, even if it 
appears to boot.

Can you see why the mantra commands you to verify each of 
those items in the correct order? You can waste a lot of time 
debugging a later item if an earlier entry in that list is bad.

Say it with me now, “Power, clock, reset.” That simple phrase 
can save you hours of time and effort.  Designers working in 
other skill areas will no doubt have similar mantras for their 
expertise. Learn these ultra-quick checklists from your mentors.

Divide and Conquer  (Debug by Division)

1.	 Verify the problem (output is bad).
2.	 Verify the input is good.
3.	 Start testing near the middle of the system. Keep a 

record of every test.
4.	 If the result is good, set that point as your new start 

and then pick a new middle.
5.	 If the result is bad, divide the system from the start 

point to your current point.
6.	 When no more division is possible: diagnose that 

specific node (stage or block) of the system.
7.	 Check for common subsystems that affect all nodes or 

stages.
8.	 Learn the first-check mantras for your skills.
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Stimulus-Response testing

There is a special subset of debug by division called stimulus-
response testing.  In its most basic form, stimulus-response 
testing asks the question, “What happens here when I do this?”

Stimulus-response testing can be used as the specific tactic of 
debug by division. For example, if you have a guitar amplifier, 
you might feed a fixed signal at 1 kHz into the input jack. You 
can then listen to or measure the output (or at any point in 
between input and output) to try to observe what has happened 
to that original signal.

One of the simplest examples of stimulus-response testing 
comes in the form of a push-button switch, used to activate some 
function on a product. The stimulus is the action of your finger, 
and the response is everything that happens from the time you 
start pressing until you completely release that push button.

I like to use this push-button example as an interactive 
brainstorming exercise to create a list of all of the ways you can 
vary this test or describe the behaviors you expect to observe.

●● What do you expect to happen when the button is pressed?
●● What do you expect to happen when the button is released?
●● What do you observe or capture when you press the button?
●● What does it feel like when you press or release the button?
○○ Does the button have a nice surface?
○○ Is the button motion (travel) smooth?
○○ How much force does it take to press the button?
○○ Does the button catch or rub on the edges of its cavity?
○○ What happens if you use a fingernail to press the button?
○○ What happens when you press off-center on the button?

●● What does it sound like when you press or release the 
button?
○○ Is there a noticeable click? Or more like a thud?

●● What do you see when you press (or release) the button?
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●● How many times can you push the button before it fails?
●● Is there any marking on the button?
○○ How does the marking look visually?
○○ Is the marking easy to read?
○○ Is the marking clear in low-light?
○○ Does the button use consistent graphics, fonts, and 
naming?

○○ Is the button illuminated?
□□ How long will the illumination source last?
□□ Does the button get hot?

○○ How many times can you push the button before the 
marking wears away?

●● Does the electrical switch suffer any “bounce” creating 
multiple activations?

●● What happens if you press two buttons at once?
●● What happens if you don’t stop pressing the button?
●● Are there any special times that pressing the button does 
not work?

●● Are there any special times that the user should never 
press the button?

●● Can the user find the button? (Don’t laugh, there are real-
world examples of buttons placed so poorly that most users 
could not find them.)

Wow! This has generated a huge list of questions—but has barely 
scratched the surface of a real system design. I am just talking 
about one button and one finger!

Whether we are designing a new product or investigating a 
problem with an existing product, there will be many times that 
we use stimulus-response testing. We want to poke the system 
in a controlled way and see how it responds.

There is a secondary question, which I will skip for the 
moment: What happens when you poke the system in an 
unexpected way?
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When the system responds to your stimulus as you expect, you 
probably can look elsewhere for the cause of a problem. As my 
mentor George says, “When everything seems okay, it probably 
is.” But when a piece of the system (block or component) responds 
in an unexpected way, you must investigate that section until 
you completely understand the behavior.  You are trying to 
answer the question, “Why did the system do something we did 
not expect when the stimulus was this?”

Normal Environment Testing
In an electrical circuit design,   you might need to know 
the response of an amplifier to various input amplitudes, 
frequencies, transients, and noise.  In addition to those direct 
signal input conditions, you will also need to understand the 
impact of environmental conditions such as power-source 
variation, temperature variation, air-pressure variation, output 
load, driver-source impedance, and on and on. That means you 
need ways to vary each of these parameters while measuring 
the output behavior. Sometimes you might need to vary several 
parameters at the same time. Yikes—that sounds like a lot of 
work!

Yes, it can be a lot of work, but fortunately you can find many 
good ways to reduce the effort. Before you start varying all of the 
environmental parameters, make sure that your design is stable 
and working well in a normal environment. For example, this 
could mean nominal power, room temperature, normal pressure 
and expected loads.
Once you have built confidence that the system works well with 
all conditions at a nominal operating point, you can start to vary 
the operating conditions. You are getting to the fun part where 
you get to torture your system.
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Three specific ideas to keep testing within reasonable limits are 
as follows:

1.	 Prioritize your testing
2.	 Automate your test sequences
3.	 Select key points and do point-testing in those areas

Method 1: Prioritize Your Testing
The first thing you need to do is prioritize your efforts.  That 
simply means you do the most important tests first.  It might 
also mean that you commit more of your total test time to the 
higher-priority tests.

For example, an electronic-circuit design absolutely must perform 
well over the entire range of allowable power-supply voltage(s). 
Likewise, a mechanical or electrical design absolutely must 
perform well over the specified operating temperature range for 
the product. Materials are selected and tested to show that they 
have the proper strength (or flexibility or transparency or some 
other characteristic) over the range of normal raw materials and 
processing. As a third example, a building darn-well should not 
fall down under normal wind, rain, and earthquakes. 

What stress parameters are most important to your skill? 
Is testing against those stresses part of your normal design 
checklist? Which stresses fall below your normal checklist cutoff 
line? Do you have good justification for skipping those tests?

Most folks will try to vary only one parameter during a test 
and observe the direct effects of that variation.  As with any 
experiment, if you vary two parameters, you can never be 
absolutely sure which change caused the behavior you observed. 
This does not mean that you cannot have lots of testing with 
multiple variations, however.  It just means that you probably 
want to try to step through a range of variations for a first 
parameter and then adjust the second parameter and repeat the 
previous range of variation for the first parameter.
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Here is an example: Suppose you have a problem report that 
a particular IC misbehaves when it starts up cold.  You have 
some suspicion that the power-supply voltage is involved in the 
sensitivity because all the failing units happen to measure with 
a particular power-supply rail in the low end (but still allowable) 
of the specified range for that IC. But because the failure happens 
only when the system is cold, you also want to vary temperature.

For this case, you might try startup cycles with various voltages. 
You place the product in a temperature chamber and run a series 
of tests at one temperature with a series of incremental power-
rail voltages. Then you repeat this series of tests, incrementing 
the temperature by some reasonable amount.  If you find an 
inflection point where the system changes from bad to good or 
good to bad behavior, you can then fine-tune the steps to get a 
more accurate indication of the failure conditions.

You have to use your own common sense to know when you 
have data that is good enough. For example, a statement like 
“The system fails when the PSU voltage is between 3.00 and 3.3 
volts DC and the temperature is between 25° and 50° C” might 
not have enough precision to enable others to reproduce your 
inflection point.  But statements like “The system fails when 
the PSU voltage is between 3.215697 VDC and 3.227437 VDC 
volts DC and the temperature is between 27.6579° and 27.6601° 
C” might imply a false accuracy. Other folks might be able to 
reproduce your results by knowing that the “failure has been 
observed between 3.21 and 3.22 VDC at temperatures slightly 
above 27.6° C.” Not all samples might fail at exactly the same 
place, so you just need to convey the right area.

Method 2: Automate Your Testing 
One good way to reduce the test effort is to automate your test 
tools.  This lets you repeat your tests under a wide variety of 
test conditions.  Automation lets you collect test data at far 
more points than you could do by hand. There are as many good 
approaches to automation as there are good engineers. This is an 
area where you should avoid religious wars about programming 
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languages (tools) and focus on getting the job done.

In larger organizations, you can often turn to interns or co-op 
students who will have the time, interest, and focus to attack 
these automation tasks. The downside is that you are handing off 
a critical effort to somebody who is less experienced. The upside 
is that as the more-experienced person, you can focus on the 
big picture of perfecting your product design while the intern is 
learning about the product (or process or system) by discovering 
how it is tested and helping you speed up that testing.

When you set up automatic tests, it is really important to 
understand the characteristics of the measurement system. 
Your automation must include the concept of settling time. This 
is where you allow an appropriate delay between the time your 
stimulus pokes the system and the time when you measure the 
effect. That delay might need to be zero (if you are looking for 
transient effects) or it might need to be longer if you have a long 
path between the stimulus and the expected response.

Method 3: Key Point Testing
Another good method to reduce the total effort in testing your 
products is to select key points along a continuous curve and 
simply test near or at those points.  For example, if you are 
designing an audio amplifier,   you might test the amplitude-
versus-frequency response against certain environmental 
factors by choosing a relatively small number of meaningful 
frequencies. For example, you might see 20 Hz, 200 Hz, 500 Hz, 
1 kHz, 2 kHz, 5 kHz, 10 kHz, and 20 kHz as representing low, 
middle, and high ends of the normal human hearing range. You 
could then run specific point tests at those frequencies over a 
range of tests that vary something else, such as the temperature. 
The curves (measurements) are captured and can be plotted to 
quickly identify any unwelcome dependencies.

Somewhere during your product testing, you want to do a 
really exhaustive and extensive test of certain parameters (like 
the aforementioned amplitude-versus-frequency audio test). 
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But you don’t have to repeat that massive data collection for 
every single test cycle against every other conceivable stress or 
environmental factor.

If you find inflection points in your design, be sure to include some 
additional nearby point-test steps to expose the characteristics 
of your system in that region.

Overstress Testing
In addition to tests you do for normal operation, there are many 
fields in which you need to test the system or product with 
stresses that greatly exceed the conditions expected during 
normal operation. You can generally lump these into a category 
called overstress testing.

In electronics, you might do tests for sensitivity to electrostatic 
discharge (ESD) or electromagnetic interference (EMI). Many 
products are tested for mechanical shock and vibration. Drop 
tests are done on most products that are shipped in some way to 
their final user.

The truth is that as engineers, we should always anticipate 
conditions that might cause our designs to suddenly experience 
stresses far beyond their normal operating conditions. You want 
to know what happens then, when the system gets hit either 
from the outside or from a failure within the system.

Does this plane fall out of the sky when an unexpected wind gust 
hits a wing? Does a helpful medication turn into a poisonous 
substance when it sits without refrigeration in a truck for three 
days during summer in Phoenix, AZ? Does your house fall down 
when 24 inches of snow sits on the roof? Does your TV set catch 
fire when a two-cent diode short circuits, or does the protective 
fuse blow?

Nobody can protect against every conceivable stress.  For 
example, most TV sets will not survive being tossed a mile or 
two by a tornado. The trick, then, is to understand what failures 
and stresses might be foreseeable and reasonable. The long list 
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of safety warnings on a simple stepladder can be seen as a clue 
that such standards do change over time.

Regulatory Compliance Testing
Nearly every product or design eventually runs into some kind 
of governmental or industry-standard compliance requirement. 
Either you or some agency tries to verify that your product meets 
the rules and requirements of a particular standard. This might 
be for the safety and protection of the user, or it might be simply 
to protect the good name of the licensor of some intellectual 
property.  You might have to fill out some simple or complex 
paperwork and minimal or extensive compliance test data might 
be required. The agency might do testing itself or simply review 
your paperwork.

Larger companies will have entire groups dedicated to these 
testing and reporting functions. Smaller organizations will often 
subcontract some or all of this work. In any case, you are never 
completely relieved of the need to understand why and how 
these tests are put in place.

There is a natural tendency for new engineers to see these 
tests and requirements as unwanted signals (noise) and lots of 
irritating paperwork. This is a common mistake—one I hope you 
will avoid. 

The best designers want to understand all of the requirements of 
their design in advance. This enables those excellent designers 
to balance those needs during system design, subsection design, 
and component selection.  They find the center of the design, 
which does not tip over too far in any direction.
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The Nothing Test
One final note of interest: Often, the appropriate stimulus 
for a stimulus-response test is nothing. What happens to the 
system when you give it an input of zero, nothing, nada? Does 
the system stay stable or does it get all twitchy, hunting for a 
different input? In electronics, a nothing signal is often used for 
signal-to-noise measurements.
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Stimulus-Response Testing

1.	 Do normal environment testing first. Build some 
confidence that your system works.

2.	 Next stress-test your system over the expected 
operating ranges.

3.	 You can reduce your test burden if you prioritize your 
testing, automate your testing, and use specific point-
testing instead of continuous-sweep testing.

4.	 Don’t forget to do appropriate Overstress Testing.

5.	 Always do all regulatory compliance testing.

6.	 Test early and test often.

7.	 View testing as part of design.
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“If I Could See it, I Could Fix it!”

One of the most common things I have heard people say about 
a problem is, “If I could see it, I could fix it!” If you carry any 
understanding from this book, I hope it is that saying.

Engineers are remarkably clever people.  Something that has 
always impressed me is the ingenious ways that engineers find 
to “see” a problem. In some cases, I am talking about literally 
finding a method to see something happen with their eyes.  In 
other cases, they try to visualize something in their mind’s eye.

For example, mechanical engineers often build or modify an 
assembly to be a cut away where hidden moving parts are 
exposed. When some specific motion or action takes place, they 
can then observe the behavior of the individual parts.

Suddenly, a behavior that seemed strange or impossible becomes 
an obvious consequence of some small attribute. You find yourself 
saying something like, “Oh, I see it now. That little end piece on 
the plastic lever is folding up from too much pressure. We just 
need to make the actuator surface bigger to spread the force over 
a larger area. We could also use a stronger material, but that 
would cost more.”

Or, “Oh, I see it now. That little piece that holds these other two 
pieces together has fallen out of the assembly.”

Or, “Oh, I see it now. The oscilloscope shows a lot of random 
noise riding on the reset line DC average. Goodness! There is no 
leakage path to get rid of this unwanted signal. We have a very 
long wire on a very high impedance input.”

Or, “Oh, I see it now. The water is coming in here through this 
little crack, and then running across this board until it comes 
out way over here.”

Or, “Oh, I see it now. We forgot to include a label on this material 
stating ‘HIGHLY EXPLOSIVE—Keep Away from Heat or 
Flame.’”
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Figure 16-1 shows a photograph of a padlock with certain 
regions intentionally milled away. This cutaway design allows a 
locksmith to visualize what is happening inside the lock as the 
mechanism is actuated by the proper key or by an improper key.

Figure 16-1: A cut-away lock allows us to clearly see and 
understand the workings of the cylinder and pins.

Figure 16-2 and Figure 16-3 show a close-up of the mechanism, 
first with no key inserted and then with a proper key inserted. 
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Figure 16-2: With no key inserted, the pins do not line up 
at the cylinder boundary.

Figure 16-3: Correct key inserted, the pins line up; 
allowing the cylinder to turn, releasing the hasp.
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Sometimes, a mechanism cannot work when it is open to the 
outside, such as the combustion chamber of an engine. In that 
case, a mechanical engineer might invent a viewing port made 
of glass, quartz, or plastic. Or the engineer might find a way 
to embed a tiny camera into a device. Sometimes, the engineer 
might build an entire sample from transparent materials.

Maybe the thing you are trying to observe is really, really small. 
The tools that help biologists see tiny micro-organisms can be 
used to study man-made devices, too. Magnifiers and microscopes 
are helpful.  The trend to ever-smaller electronic devices has 
moved much of the electrical engineer’s domain from unaided 
vision down to magnified, then down to extremely magnified 
viewing.  Indeed, seeing the structures on modern integrated 
circuits requires leading-edge scanning electron microscopes.

When I started in electronics, we could find a visible defect on 
a circuit board with our own eyes.  Eventually, we needed a 
magnifier to see small connections. Today, a good microscope is 
essential—and this is just to view the parts on an assembled 
circuit board, let alone to see the features of a semiconductor like 
an IC. X-ray microscopes let us see the shape of hidden ball grid 
array (BGA) solder balls.

A couple of decades ago, I owned a business that designed and 
tested industrial control computers. Like many businesses (more 
and more in today’s environment), we did not do the assembly 
and soldering of our circuit boards. Instead, we contracted that 
function out. We designed the product and the test fixtures and 
did 100% of the product testing ourselves.

One of the things we noticed during testing was that certain 
problems repeated themselves, especially when our contract 
manufacturer added new workers. The most common of these 
was a simple mechanical assembly defect.  At the time, most 
integrated circuits were not very dense and were housed in dual-
inline packages (commonly called DIP ICs).  Sometimes, one 
pin at the end of a row would fold under the device instead of 
going into the device socket or PCB hole. This also applied to the 
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sockets that were commonly used to hold the ICs. Occasionally, 
an IC pin would miss the target and go to the outside of the 
socket or get bent under the socket.

This was what we termed a “purely mechanical defect.” The 
device would have worked if the IC or socket pin had not bent 
out or under. The tricky part of this defect was that it was often 
very difficult to detect visually because a pin in the hole looked 
a lot like a pin that was bent under. A quick look almost always 
missed this defect. To address this, we developed some visual-
inspection methods with bright lights and magnifiers to help us 
find this kind of defect.

The most insidious part was that sometimes the IC pin 
would actually make contact with the desired connection 
point on the socket. A given board might appear to work 
well and then might intermittently stop working.

In today’s electronics with higher density packaging, you are not 
likely to encounter this exact problem. But you will encounter 
some defects due to poor mechanical handling of components 
during assembly. Good factories will be able to self-identify and 
correct such defects if they have proper in-house test fixtures. 
You might need to help them during factory start up to recognize 
and locate similar kinds of unintended component damage.

A Different Kind of Vision
In some cases, you don’t need to see what is happening optically. 
Instead, you need some way to see something in your mind’s 
eye.  In other words, you want to mentally visualize what is 
happening, even if that mental picture or mental movie does 
not match the real physical process.  Sometimes, the answer 
is to create a simulation.  You substitute familiar objects and 
processes for those you cannot see to get your brain to absorb 
the meaning of what is happening.

Don’t forget that you can substitute any of your senses for 
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“seeing” a problem: 
●● If I could see it, I could fix it.
●● If I could hear it, I could fix it.
●● If I could smell it, I could fix it.
●● If I could touch it, I could fix it.
●● If I could taste it, I could fix it.

Please be careful with these approaches so that you do 
not get hurt in an attempt to directly sense the behavior 
of a system. Let your tools do the work for you and stay 
safe.

Of course, sometimes we just need to look and the problem 
becomes obvious.

8 Once upon a time, Bart owned a small machine driven 
by a gasoline engine. (The exact function of the machine is not 
important to this story.) The machine was mounted on wheels 
and sat very close to the ground. The engine did not seem to run 
very well. It could be started, but ran very roughly and would 
run only a little more smoothly if the choke was fully applied at 
all times—even if the engine was already warm.

Bart was mystified. He knew that his list of “things I don’t know” 
about engines was very long. He did remember that the engine 
needed fuel and air to mix in the cylinder before it ignited. This 
made it seem very strange to him that the engine wanted to 
have its choke set, because he knew that meant that the engine 
was acting like it was getting too much air instead of too little. 
“How in the world could it get too much air?” he wondered.

Finally, in desperation, he got down on his hands and knees and 
ducked his head down so that he could see the lower part of the 
engine. He could follow the path for the fuel from the tank into a 
small metal object. The air filter was to the side, so he could guess 
that the fuel and air were mixing in this small metal object. Bart 
seemed to recall that this part was called a “carburetor.”
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“Okay, so the fuel and air go in here and here, and then they go 
out—hey, wait a minute!”

Bart realized that the carburetor was supposed to be attached to 
the cylinder part of the engine with two bolts. But he saw only 
one bolt—and that attachment had backed away from the engine 
body by more than a centimeter. There was a huge gap such that 
extra, unfiltered air could mix into the fuel-air mixture before it 
entered the cylinder.

Bart decided that he could easily find an extra bolt and tighten 
the remaining bolt to hold the carburetor to the engine. It was 
obvious that the engine had shaken enough during normal 
operation to completely unscrew one of the bolts and almost fully 
unscrew the second bolt.

He got a bolt with the right size threads and then tightened 
everything back together. The engine started up and ran with 
no problem.

The interesting part of this story is that with almost no knowledge 
of the parts or operation, Bart was able to pinpoint the problem 
with the engine—just by looking at it. The answer was to get 
down on the ground and get a little dirty. The problem was so 
obvious that once Bart could see it, he could fix it.

A Wonderful and Inexpensive Tool for Seeing
In the past few years, a new tool has become available to help 
people see some problems: digital cameras.  Digital cameras 
often come with lenses capable of producing outstanding 
macro photography. Small objects can be made to fill the entire 
photograph. When viewed on a large monitor or as a large print, 
tiny details are greatly magnified.

Thanks to this tool, it has become possible to take photographs of 
objects and systems that previously would have been very difficult 
to fit under a classic microscope and illuminator arrangement. 
There is a bit of skill required to take good macro photographs; 
fortunately, plenty of guidance is available in books and (gasp!) 
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even on the Web.

In general, you need to shoot at higher aperture numbers (i.e., 
smaller aperture settings), and you almost certainly will need 
to attach the camera to a tripod or some other fixed-position 
mount to prevent motion blur. External flash or high-intensity 
continuous light sources can help illuminate small features in 
macro photographs.

Remote Vision
8 Once upon a time, Roger’s mother had gotten herself 
into quite a problem with her personal computer.  Like many 
technical workers, Roger provided problem-solving support for 
family members who got into trouble with their modern widgets. 
In this case, Roger’s mother was struggling more than usual—
which was not really surprising considering she was 90 years old 
and trying to decipher the mysteries of Microsoft Windows.

Roger had intended to install remote-access software on her 
computer the last time he had visited his mother, but that task 
had been deemed unnecessary. At the time, things were going 
well. But that meant that on this day, Roger was left trying to 
solve his mother’s problem without being able to see the problem.

The more Roger’s mother tried to describe the problem, the more 
confused Roger became. The words she used did not match the 
image in his mind of how her screen should appear. This most 
recent problem was urgent: She could not reply to an important 
email until the problem was solved. But Roger could not figure 
out what she was describing.

To fix his mother’s problem in person would require a five-hour 
drive there and another five-hour drive back home.  He was 
confident the fix itself might only take a few minutes, so the 10 
hours in the car sounded like a low-productivity use of his time. 
If only he could see her screen!

Suddenly, an idea popped into Roger’s head.  “Mom,” he said. 
“Do you still do a Skype call every week with your good friend 
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in California?” Roger knew that friend was battling cancer and 
there was no assurance that these calls had not come to an 
unfortunate end.

“Yes,” she said, “Every Saturday without fail.”

“Excellent!” Roger finally had a way to attack this problem. “Start 
up Skype now. I am going to call you.” In less time than it takes 
to describe it, they had established a Skype video connection. 
“Keep listening on the phone,” Roger said.  “I want to be sure 
that our verbal communication does not get interrupted.”

“Here is what I want you to do,” he explained. “Pick up the video 
camera from on top of your monitor and point it at the screen 
instead of at yourself. You may have to wrestle with the wire a 
little bit, and the focus might not be so good, but hopefully I will 
be able to see something.”

The video feed in Roger’s Skype window looked a bit like the 
view out a porthole of a tiny ship caught in a hurricane. Images 
flashed and smeared back and forth.  The scene was a roller-
coaster ride of snippets from his mother’s computer.

Then suddenly, in the corner of the image, Roger could see for 
just an instant the email application window.  In that instant, 
Roger understood what she had been trying to describe and 
why she was confused.  A collection of display rows had been 
collapsed into a single line, where normally they appeared as a 
neat vertical listing.

Roger’s mother returned the camera to its normal position. After 
he walked her through the process of expanding the display rows, 
she could see the expected email listings where before there had 
only been a single row.

Roger was thrilled and disappointed at the same time. He had 
avoided driving 10 hours to fix a simple problem, yet he was 
missing out on a chance to visit his mother. 

He congratulated himself for coming up with such a clever debug 
tool, but eventually it seemed obvious to him.  The best ideas 
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always seem obvious—after you have them.

The next time Roger visited his mother, he installed remote-
access software. It was a bit difficult to use—he had to walk her 
through some settings each time he wanted to remotely access 
her machine—but the tool gave him a much easier way to see 
exactly what she was seeing on the screen.

They later fixed many problems together using the remote access 
software, but none were quite as much fun as the roller-coaster 
camera debug.

If I Could See It, I Could Fix It

1.	 Your brain helps you convert images to understanding.

2.	 Sometimes, you just need to see the problem, and then it 
becomes obvious.

3.	 Use every tool available to help you see.

4.	 Sometimes we need to “see” with our mind’s eye, not our 
physical eyes.

5.	 Digital cameras with macro capability open up new 
possibilities for viewing small devices.

6.	 You can see things remotely using inexpensive cameras 
and software.
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Measurements

Remember, you are trying to find out the stuff you don’t know. 
To achieve this, it may be that you need to extend the concept of 
“if I could see it, I could fix it” to things you cannot observe using 
the literal meaning of “seeing.”

One of the best debug methods you will ever use is to apply some 
instrumentation to your system. This is where you connect (or 
insert or apply) some kind of measurement device to your system 
that is not part of the normal system. That measurement device 
converts a property of the system to a display or value that you 
can see.

Sometimes, you won’t have a clue about where to look (measure) 
in the system.  Instead, you will start with a broad sweep of 
measurements that are mostly to verify your basic assumptions. 
Often, you will have some kind of working theory about the 
failure so you have a better idea of where to look in the system. 
Hopefully, as your debug progresses, you are targeting specific 
areas more closely. 

If you find yourself looping back to broad-sweep measurements, 
it might be a sign of one of the following:

●● You don’t have much confidence in what you know.
●● Your system design is not very stable yet. 
●● Underlying assumptions might be false. 
●● The high-level design is changing without good 
documentation and tracking.

Choosing the Right Tools
I often ask electrical-engineering job candidates, “If you were 
sent to a remote location to fix some piece of equipment that you 
had never seen before, what single item of measurement gear 
would you take with you?”

The answer I am hoping to hear is “an oscilloscope” or perhaps “a 
digital storage oscilloscope.” (For RF folks, a spectrum analyzer 
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is an equally good answer.) The reason I look for that answer 
is that while both a voltmeter and an oscilloscope can give you 
a reasonable estimate of voltage/current in a circuit, only the 
oscilloscope adds the ability to see the element of time in the 
signals. This means you can estimate frequency or make general 
observations of signals, noise, and time-varying changes.

In electrical product development, the most common 
instruments we use are probably voltmeters and 
oscilloscopes. Temperature sensors of various kinds are 
used for thermal studies.  I don’t know the equivalent 
best answer for every skill area. The people you trust as 
mentors should know this for their skill, so be sure to ask 
them. I hope that you know the instruments used in your 
skill area better than I ever could. If not, that is a good 
place to start learning.

In general, most skill areas have data recorders or instruments 
that let you observe and capture (record) a specific measurement 
over time. They let you “see” the behavior of the system, and 
they let you record that behavior and play it back as often as 
you need.  In almost every case today, these are computerized 
instruments, which can easily pass their data collections in 
common file formats. That makes the results easier to graph, 
to analyze, and to communicate to other folks. It also increases 
the accuracy of your information because (hopefully) there is no 
hand-transcription of the data.

Don’t forget that other senses might apply. Perhaps I should have 
said, “If I could hear it, I could fix it.” The sense you need to apply 
will be determined by the problem. For example, if you needed to 
know the specific moment in a sequence that a particular event 
was happening, it might be just as helpful to sound a bell or a 
beeper as to light an LED. This would be especially important if 
you needed to watch something else going on in the system and 
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just needed an indicator to know when some event happened in 
relation to other events. Using an acoustic marker frees up your 
vision for other observations. 

It is interesting to think about why so many instruments 
convert the value we wish to measure and capture into 
something visual. I believe this is true because our brains 
have developed very strong visual-processing abilities. 
Evolution has given humans incredible ability to recognize 
patterns, sometimes buried deep in noisy data.

False Measurements
Unfortunately, sometimes that need to find recognizable 
patterns can lead you far astray. You can be so anxious to find 
useful information that you “see” patterns where none exist. 

There is a common occurrence with medical students in which 
they put together a few symptoms that they believe they are 
experiencing and suddenly determine (believe) that they are 
suffering from whatever exotic and extremely unlikely disease 
that they have most recently studied. They cannot help it. Their 
brains are programmed to find these patterns.  In a very real 
way, that skill is working too well.

Equally, people can be fooled by false representations when they 
make false measurements. For example, if you greatly under-
sample a signal, aliases will appear at incorrect frequencies. 
If you measure a voltage that has some DC and AC with a 
DC voltmeter, you will get false, misleading, and maybe even 
dangerously wrong readings.
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Does Your Measurement Affect the Thing Being 
Measured?
All measurements have some impact on the thing being 
measured. You need to understand whether this is an effect that 
you need to worry about or if it will be small enough to discount 
it in your data.

One of the most common experiences in electronic system design 
is to find a circuit block that works badly—but suddenly works 
quite well when an oscilloscope is connected to some particular 
node in the circuit. At the next engineering meeting, there will 
always be some wag who says, “No problem, we will just need to 
ship a ‘scope with every unit!”

What is happening to the circuit? In many cases, what you will 
discover is that the circuit design is exquisitely sensitive to the 
amount of capacitance at that node. The oscilloscope probe adds 
some small amount of capacitance (typically between 1 and 10 
picofarads—yes, that is 10-12 farads), and that tiny capacitor is 
enough to shift the circuit from non-working to working.

Inevitably, some casual observers will quickly say, “Okay, so you 
just need to add a little capacitor to your circuit and then it will 
always work like it does with the oscilloscope connected.”

Almost always, this is a massively, monstrously, epically bad 
idea. First, you need to understand the exact mechanism that is 
at work here. Yes, the primary electrical characteristic of that 
oscilloscope probe is mostly capacitance. But there is also some 
small resistance to ground (usually 1 million ohms or more for 
active probes). Finally, the probe will also act as a tiny antenna 
and could couple noise into the circuit or act as a path for tiny 
ground leakage currents.

I have seen circuits where just connecting the oscilloscope 
ground to the system chassis ground was the change that drove 
the circuit from working to failure (or from failure to working). 
Be sure to check for this effect when you find that connecting 
your ‘scope makes any noticeable difference to system behavior.
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Even if capacitance is the only significant factor, you need to 
figure out why that extra capacitance is making a difference in 
your circuit operation. Also answer the question, “Is there some 
other effect besides the capacitance of the probe that is making 
a difference in my circuit operation?”

There are a couple of possible effects, and you will need to 
understand which is at play in your circuit. Stray capacitance to 
ground can simply act as a filter, removing some high-frequency 
noise that was previously upsetting your circuit.  In this case, 
you had better find out the source of that noise.  Is it internal 
to your system? Is it coming from a different circuit block? Is it 
coming from outside your system?

Stray capacitance to ground can also cause a slight time delay 
on digital signals. A given signal transition will arrive later than 
it would have arrived without the added capacitance.  Again, 
noise on the signal can be reduced so that the slower transition 
will have less high-frequency noise and therefore might make a 
smoother transition through the switching threshold of the logic. 
Is your circuit double-clocking on the noise? Or is your circuit 
working (or not working) because of a change in setup or hold 
time from the delay?

For analog circuits such as video or audio, the additional 
capacitance and resistance of a probe will change the shape 
and performance of any filters in the circuit. You will need to 
estimate the effect of these on performance.  An audio circuit 
can often survive hundreds of picofarads of added capacitance 
with only a slight increase in distortion and no noticeable loss of 
audible high frequency, but even a few picofarads can be enough 
to destroy the parametric performance of a video circuit.

Laying a plastic ruler on a block of steel is not likely to change 
the length of that piece of metal by any noticeable amount. But 
laying a steel ruler on top of a single bacterium might end the 
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life of that sample and ruin an experiment. You have to make 
some judgment calls in your measurements and have a good idea 
of the relative scale of what you are trying to measure.

When the measured performance of a system seems to be 
unstable or difficult to repeat, it is a good idea to look at the 
characteristics of the measurement system and evaluate how 
they compare to the thing being measured.

Measurement Errors and Tolerances
Every measurement you make will have some error. Similarly, 
every component you use will have some variation, which 
represents a kind of error against an idealized design. We call 
the allowable variations “tolerances.” Hopefully, tolerances 
and measurement errors are so small that your data is still 
meaningful. 

If you are doing a problem investigation that involves lots 
of measurements, at some point you need to do an error and 
tolerance estimation.  Include that information in your report 
of the experimental data.  If your measurement methods don’t 
change and your instruments don’t change you probably only 
need to do this kind of error and tolerance study once during any 
investigation.

8 Once upon a time, Boris was investigating an apparent 
television signal quality failure. The customer had specified a 
specific signal parameter (color saturation accuracy) to be no 
greater than 2%. This created some concern, since some samples 
were showing measurements slightly outside this value. Boris did 
an error/tolerance study and found that the industry standard 
measurement instrument (the test instrument that everybody 
in the industry used) only offered a basic absolute accuracy for 
chroma amplitude measurements of 1%. In order to guarantee a 
2% measurement, Boris needed his device to be better than 1% 
absolute accuracy, since the instrument could contribute that 
much error by itself. This seemed strange and excessive.
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At some point during the investigation, Boris and his coworkers 
had a sudden insight.  The customer was using a video 
measurement which indicated the absolute voltage level of the 
color signal within a complex video waveform. They were then 
assuming this value told them the color saturation of the video. 
The team realized that saturation in a composite video signal is 
represented by the ratio of the luminance to the chrominance 
signal. 

Suddenly it was clear what was happening.  Small variations 
in amplifier gain showed up as changes in the luminance and 
the chrominance signals. This meant that the color saturation 
accuracy would not be affected by these small changes in gain, 
since that parameter was represented by the ratio of these two 
measurements.  The same gain error would cancel out in any 
ratio calculation. However, the customer was ignoring the ratio 
by doing an absolute measurement. [In fairness to the customer, 
no automatic method for measuring color saturation accuracy 
existed in any of the common instruments.]

Some deep library research showed that multiple studies (40 years 
earlier) had shown that this particular signal characteristic could 
not be observed by viewers at less than about 15% error. Boris 
and his team were trying to meet an unrealistic requirement. 
The final step was the discovery that the interconnect cables 
commonly used for this signal often contributed approximately 
a 5% absolute amplitude error! 

The customer eventually was convinced that the product was 
meeting the spirit of their requirement if not the absolute 
measurement and the product was accepted without any design 
change to fix this problem.

You might have heard this saying about tolerances and precision:

“Measure it with a micrometer; mark it with a crayon; cut it 
with an axe.”



An Engineer’s Guide to Solving Problems

126

Like the previous video-signal example, it does little good 
to design part of a system with extreme precision if the next 
part of the system is drastically less precise.  Systems need 
consistency. More than this, they need common sense applied. 
It does no good for quality if you measure with high precision 
but mark it (i.e., create your design) with gross errors. Likewise, 
the manufacturing methods need to be matched to the design 
tolerances. Do you cut with an axe or a laser beam?

Precision is the ability to represent a measured value to more 
digits. For example, 3.3001 volts is a more precise measurement 
than 3.3 volts. However, if your measurement instrument has 
an absolute accuracy to only 0.1 volts, all that extra precision 
does not help. It is meaningless.

Here is a fun exercise that you can try. What do you think is the 
most accurate or precise device in your home? Two reasonably 
good answers would be either your personal computer’s hard 
disk drive (HDD) or your DVD player.

After all, DVD players read microscopic marks on a disk.  It 
takes astonishing accuracy for a DVD player to find, focus, and 
follow the bit track as it spirals out of the center of the disk. It 
is especially amazing given today’s rock-bottom prices for such 
a device. 

Likewise, the HDD in your computer must follow bit patterns 
recorded into the magnetic surface of the platters.  Just a few 
years ago, the track-following accuracy for placing the heads 
was approximately equal to the diameter of 12 atoms of copper!

Here is another good question. What is more accurate: the real-
time clock in your laptop computer or the 60 Hz power in your 
house? This turns out to be a trick question. The instantaneous 
accuracy of the 60 Hz power-line frequency in your house will 
vary quite a bit, but the average accuracy is actually very, very 
high. This is because your power company intentionally varies 
the short-term frequency to maintain a long-term average 
accuracy.
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They do this to be sure to keep motor-driven clocks very accurate. 
In contrast, your laptop real-time clock runs from a quartz or 
ceramic crystal oscillator.  The instantaneous frequency does 
not vary much from moment to moment. However, the absolute 
accuracy of that oscillator will probably be off by several minutes 
per year.

Sensitive Nodes
What do I mean by sensitive nodes? Do I mean circuits or nodes 
that easily get their feelings hurt by criticism? Do I mean parts 
that intentionally respond to touch? Do I mean systems that are 
so secret, I must not tell anybody how they work? The answer to 
all of these questions is no.

When people talk about sensitive nodes, they mean designs or 
nodes within a system that change their behavior greatly when 
very, very tiny changes are introduced either to their components 
or by the addition of some small extra element. If you find that 
something in your design is greatly affected by a reasonable 
measurement, then you probably have a sensitive circuit.

No doubt, you are now jumping out of your chair and screaming, 
“How in the heck do I know what a reasonable measurement 
is?” In many ways, you are going to have to work that out for 
yourself.  Experience helps, so you can discuss this with your 
network of experts. You can also do some rough estimation.  I 
personally think a lot about general rules of thumb. One of mine 
is a 10% approximation test.

Good engineering says you should have some safety margin 
in your designs. Can your design allow a 10% variation in any 
characteristic of one component? Could your design allow 10% 
variation in all components? Maybe your design won’t pass 
every measurement and every requirement, but would that 10% 
change make the design completely stop working? 

For mechanical designs, if you have a normal tolerance of X 
millimeters in a manufactured part, could your design still 
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function if the variation of that part is out of specification against 
your allowable tolerance by 10%? (If you allowed for X mm ±1 
mm, will your design break if a given part is ±1.1 mm?) Will the 
parts bind together and start breaking pieces off when you are at 
the tolerance limit, instead of slightly less than the limit? 

Another way to ask this question would be, did you allow your 
component supplier any room for error or realistic manufacturing 
variation?

Of course, the opposite error can creep into your designs. If you 
try to get too loose, to allow for every lack of quality in your 
components, your system as a whole can become too sloppy, too 
imprecise. Pretty soon, you have just made junk that does not 
work well in any case or that feels bad when you try to use it.

A system needs enough precision to work really, really well and 
to meet all requirements, while allowing for any reasonable 
variations in components. Sometimes, you will need to demand 
better precision from your components; other times, you will 
have to know when you are asking for too much.  Price and 
availability of components are sometimes good guides to when 
you have pushed too far.

For electrical designs, sensitive nodes are almost always 
associated with high impedances. The laws of physics start to 
eat us up because a high impedance input will be exquisitely 
sensitive to any signal induced into or coupled onto any attached 
conductors.

Even having nothing more than a PCB pad on a floating, high-
impedance input can spell trouble for a design.  Capacitive 
coupling can introduce large voltages at such a node.

Electrical designers must learn to tie unused nodes to a low-
impedance reference plane (ground, Vdd, or some equivalent). 
Software engineers should always ensure that any unused 
input/output pins are configured as outputs and driven to an 
appropriate active state—either high or low.
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Tear-downs as a Debugging Tool
There is another method for helping you “see” a problem: You 
can tear apart a working system to try to find out if the process 
of putting the system together has fundamentally changed some 
parameter or aspect of the system that you did not expect.  It 
is possible that the process of putting components together has 
modified those parts in some way.

A tear-down exercise lets you re-measure the performance of an 
individual component to be sure it has not suddenly changed 
after assembly. This process also enables you to verify that the 
components you specified are indeed the components used to 
assemble your product. It is amazing how many times you will 
find that a similar but unequal component has been substituted 
during assembly.

Tear-down reports are much more commonly used to study 
existing or competitors’ products or systems. With this tool, you 
can study how competitors did their system design, the specific 
components they selected, or whether they have created some 
clever new arrangement of basic parts. Often, the goal is simply 
to determine an estimated cost of manufacture for a competing 
product.

Reading tear-down reports can help you become a better 
designer. The more you see other designs, the better idea you 
will have how other people have solved similar problems. The 
goal is not for you to simply copy other people’s ideas; rather, you 
want to understand the things they did and why they did them.

Later, I will discuss the idea of “reading” designs, just as 
you learn to read books and magazines.
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Measurement and Instrumentation Concepts

1.	 Remember, if I could see it I could fix it.

2.	 Use instrumentation, measurements, and data-capture 
to see hidden information.

3.	 Watch out for false measurements.

4.	 Understand your measurement errors and tolerances.

5.	 Does your measurement affect the thing being 
measured? (Of course it does, but is that variation 
important?)

6.	 Understand where you have sensitive nodes in your 
design.

7.	 Sometimes you need to tear something apart to really 
see what is going on inside it.
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Instrumenting Software

The word instrument is normally a noun and typically refers 
to a physical device that helps you do something (play music, 
measure a parameter, capture some information).  Like all 
engineers, I fall into the trap of converting nouns to verbs: “We 
need to instrument the system to capture this information.”
There are not many physical tools dedicated to helping debug 
software.  There are, however, some in-circuit emulator (ICE) 
devices that substitute for a given processor and enable you to 
set traces and captures for specific kinds of events. In addition, 
logic analyzers have been around for many years, but they are 
disappearing simply because too much of the critical circuitry is 
buried within a single IC or system on a chip (SoC). You cannot 
directly probe the internal buses to monitor them. Many of these 
buses are sensitive circuits and run at such a high frequency 
that it is increasingly impractical to add any circuitry to observe 
them.
Most new SoC devices include on-chip debugging abilities. For 
example, Freescale’s background debug mode (BDM) and other 
similar debug ports have become standard in the industry. 
System chip vendors are finally addressing the need for embedded 
debug simply because they have found themselves increasingly 
in the position of needing to provide the drivers and to directly 
solve the hardware/software interaction issues that in earlier 
times their customers were required to fix.
Eventually, every software engineer (designer, coder, tester, or 
whatever title is appropriate) will find themselves in the same 
position as the general designer, muttering to themselves, “If I 
could see it, I could fix it.”
Although code seems infinitely dynamic and changeable, software 
engineers create machines just as much as their predecessors in 
the mechanical and electrical fields. These machines are subject 
to all the same problems and worries discussed elsewhere in this 
book.
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Because the machines inside the computer are virtual, there 
is a need to create virtual instruments within or around those 
structures and give those virtual instruments the necessary 
abilities to help you see what is going on in the virtual world.
Sometimes, that might mean adding some code to keep an extra 
copy of some internal variables and internal states in a capture 
buffer that can be read after an event or after a crash.
The biggest difficulty often faced in instrumenting software 
is that the bandwidth of the channels used to report this 
debug information is too low. One age-old method is to simply 
add “printf” or equivalent lines of code to report some brief 
information to a debug port. Often, these are fairly slow serial 
port interfaces. This is not a horrible method; in fact, it is highly 
recommended, especially for simpler systems and problems.
The downside is that complex systems sometimes end up 
reporting thousands or even millions of diagnostic messages. 
If you do not have extremely rigorous design rules for these 
diagnostic messages, they can become an impenetrable jungle of 
meaningless phrases.
Here are some good examples of rules for diagnostic messages:

●● Every debug message must include a short “locator” word 
(or phrase or sequence of characters) that lets you identify 
the exact line of code which produced that message.

●● You must (no exceptions) have a method that keeps each 
diagnostic message as an uninterrupted segment of text. 
There is nothing worse than debug messages that interrupt 
another debug message, producing nonsense in the output 
stream.

●● You should have enough bandwidth in the reporting 
channel to allow you to get all of the critical information 
out of the system before (or even after) a system crash. You 
possibly won’t achieve this last item.

One of the most common mistakes in embedded system 
programming is to leave some exception vectors (interrupts 
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or software “traps”) uninitialized.  The programmer says, “We 
don’t use this function, so that interrupt cannot happen.” This is 
usually a deadly mistake. The exception happens (for whatever 
reason), and then the CPU branches off into the weeds.  In 
general, you never get any indication of why the system has 
crashed—just that it stopped working. Yuck.

To combat this, fill all of the exception vectors and trap pointers, 
even if you are sure they will never be used.  Include unique 
handler entry points so you can tell which vector was taken. (You 
know, friend—the vector you swore you could never reach….)

This usually adds some hours of coding to your work. If you are 
integrating a commercial environment, this code might be down 
at a level that you normally do not touch. Be absolutely sure 
that somebody has taken care of this step. It can save you hours, 
days, or weeks of chasing intermittent unexplained failures.

There are some folks who insist that unused memory should 
be programmed with instructions that will eventually force a 
reset or restart of the CPU if random execution starts in those 
locations. This is not a bad idea, but the implementation will 
vary greatly with different instruction sets.  Where multiple 
heterogeneous processors share a unified memory space, it 
might not be possible to use a single value this way.

Try to be sure that you never suffer from uninitialized memory 
problems. Your code can do an initial memory clearing. You can 
run your code through validation tools that check for this kind 
of error.

Tools like Klocwork Insight are very valuable in finding common 
errors in complex code.  You should select the tools that you 
believe are appropriate and make sure they get used.

One additional tool you should use is code peer reviews. Like 
hardware design reviews, you are more likely to identify 
weaknesses when the system is presented and explained to 
other skilled designers.
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Finally, I am compelled to include some advice borne from 
difficult real-world experience in chasing complex system 
problems. The toughest problems are usually solved when (at 
least) one hardware engineer and one software engineer work 
together during a debug.  Each person brings different, skills 
and knowledge to the effort and each will recognize different 
patterns or behaviors in the system.

The next chapter dives into a topic tied closely to 
instrumentation: tools and toolmaking.

   Instrumenting Software

1.	 If I could see it, I could fix it. (Works for software too!)

2.	 Use static, extra memory locations to capture transient 
values.

3.	 Build “flight data recorders” into your code to let you see 
what happened just before a crash.

4.	 Follow the rules for diagnostic messages.

5.	 Pay attention to your diagnostic message bandwidth.

6.	 Initialize all exception vectors and have them point to useful 
diagnostic messages—even if you are sure they cannot 
happen.

7.	 Initialize all unused memory.

8.	 Use code validation tools.

9.	 Use code peer reviews.

10.	 The most difficult problems are usually solved by having 
the hardware and software teams working together—not 
separately.
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Tools and Toolmaking

Every good problem solver I have ever met is an expert at using 
certain tools. Maybe it is obvious and ordinary to you, but I have 
always been amazed at the interaction of these experts and 
their tool sets.  These engineers master the use of their tools; 
they go far beyond knowing a few basics. Sometimes they dive 
into the internal design of the tool itself and find themselves 
proposing improvements to the tool.  Quite simply, they love 
their equipment.

The opposite of this is a relatively poor problem solver, who has a 
very limited range of tools. There is an old joke: “To the man who 
only has a hammer, everything looks like a nail.” (A corollary 
to this has also been stated: “When I only have a hammer, 
everything looks like my thumb.”)

It is painful to watch someone work with a new tool the first time. 
We all are a bit clumsy and need to figure out how to hold it, how 
to move it, and how it works best. Equally, it is exhilarating to 
watch a master craftsman work with simple or complex tools. 
The tool becomes an extension of the craftsman’s mind. Where 
does this transition from hopeless amateur to consummate 
craftsman take place? When does this transition happen?

One of my favorite quotes comes from former Indiana University 
coach Bob Knight. “Everybody has a will to win. What’s far more 
important is having the will to prepare to win.”3 

In fairness, Coach Knight gives full credit to Bud Wilkinson, 
the great Oklahoma football coach, as the originator of this 
statement.

3 From KNIGHT: MY STORY © 2002 by Bob Knight. Reprinted 
by permission of St. Martin’s Press. All rights reserved.



An Engineer’s Guide to Solving Problems

136

Interestingly, numerous sites on the World Wide Web give 
(undocumented and untraceable) credit for this quote to 
a flock of other sports luminaries. I think the quality of 
the idea is so good that it is inevitable that people hear it 
and attach it in their brain to their favorite hero. Maybe 
having finished this book, a few of you will forget the 
details and attribute such a wise saying to me.

The skills of the master craftsman do not come to you on game 
day, when the pressure is on to perform miracles of problem 
solving. Rather, these skills are built up during long days and 
nights of testing in the early phases of projects. The transition to 
master craftsman happens sometime during that effort. 

Suddenly, you find that you don’t need to look closely at the 
controls on the instruments. You already know where they are. 
You know how many clicks to the right or left your optimum 
setting will be found. Your fingers take over for your cognitive 
brain. It takes a lot of practice and it requires the will to prepare 
to win—or in your case, the will to prepare to solve problems.

IMG2749-5438.JPG
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The Right Tool for the Right Job
You don’t want to be the bad problem solver—the guy who only 
has a hammer and sees everything as a nail to be pounded into 
oblivion.  You want to understand the task and pull out the 
appropriate tool to complete it.

A digital multi-meter can give you extreme precision in making 
a DC measurement, but it is nearly worthless if you are trying 
to capture a runt pulse that shows up 2 nanoseconds after some 
transition on a particular memory signal.  Likewise, a digital 
storage oscilloscope can capture that runt pulse, but cannot 
easily tell you the precise resistance of a milliohm PCB trace. 
Neither tool is useful when you need to capture a 64 bits data 
bus, 32 bits of address bus, and 7 control lines for 1 million cycles 
prior to a system crash. A logic analyzer is better for that task.

Every skill has specific tools that make some tasks easier, faster, 
or more accurate than other tools. It is your job to understand 
the different tools that are available and why each might be 
better for some tasks.

Let’s face it: Sometimes, economic limits prevent you having 
all the toys—ahem, I mean tools—that you want. Even the best 
companies have budgets and limits. You need to learn to ask 
yourself, “Would that be the best expenditure of corporate cash?” 
If you owned the company, would you spend that money on that 
tool? What if it meant that the company had to fire you to buy 
that tool for the engineer who sat next to you?

Buying tools can be a tricky political game when you put it in 
those terms. You really have to assess whether the organization’s 
goals are better advanced when they have more people (a 
different kind of tool) or more equipment.  If you are the boss, 
do you want more hardware, more software, or more wetware? 
It won’t do you much good to have the hardware and software 
if you don’t have enough bodies to use them. Equally, it doesn’t 
help to have lots of people sitting around if you can’t support 
them with the hardware and software they need to do their jobs. 
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Balance, grasshopper. It is all about balance.

My friend Hugh once observed that in the period from 1970 
to the late 1980s, a small business might be composed of five 
guys and one computer.  By 1990, however, a small business 
might composed of one guy and five computers. Today, I think 
networks allow us to have more guys, but they might all work 
independently and in different locations. And each of them will 
use dozens of processors, but we don’t call them all computers 
anymore.

Be prepared to help your managers understand the value (not 
just the cost) of the tools you need.  You will need to clearly 
communicate the business advantages of providing you with 
necessary (not just interesting) equipment.

Make versus Buy
In every problem solver’s life, there comes an “aha” moment, 
when he realizes that he could see or fix or really understand 
a problem if he only had the right tool. Suppose, however, that 
in a similar “aha” moment, he realizes he cannot buy this piece 
of equipment. Maybe it does not exist because the requirements 
of this task are extremely unusual.  Maybe nobody has ever 
thought of combining the pieces together in such a way.  Or 
maybe building and certifying such a tool for use by the public 
would cost too much.

In that case, sometimes the smart thing to do is to build the tool 
you need yourself. I have seen many really good problem solvers 
do this. They make the tools they need, but only those tools that 
it would not make sense to buy or that cannot be purchased from 
anyone else.

Sometimes, these tools might be some small simple gizmo 
or widget. Maybe it helps to hold something in place or to get 
access to something that normally is buried inside a system. 
The widget might let you connect to a signal that is physically 
or electrically sensitive. It might be a piece of custom software, 
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developed just to test certain functions during development. It 
might be a complex mashup of many standard instruments and 
pieces, but put together creates something far more useful than 
those parts.

One time-honored tradition is that some of these test tools 
will suddenly blossom into an entire business or industry by 
themselves.  The tool that solved a difficult problem for one 
engineer turns out to be useful to 10,000 others. If the current 
employer is not interested, sometimes the individual engineer 
starts a new garage shop to help other engineers solve their 
problems.

Again, we come to the balance thing.  When faced with the 
decision to build or buy a tool, ask yourself a bunch of hard 
questions:

●● Is this really something you cannot or should not buy? 
●● Can you build it quicker than you can get signatures on a 
purchase order? 

●● Will it be useful for other projects? 
●● Will you use it multiple times during the development of 
this project? 

●● Does it make sense to an outside observer?
●● Does it make sense to your boss?
●● Can you build it out of pieces that nobody will regret 
losing?

If the answer to all or most of these questions is yes, then you 
have a good case for making your own tool. Go for it.

Balance this passion to make your own tools against the 
constraints of your organization and the time, money, and 
results within your reach. You really need to understand your 
limitations.

If you envision building a million-dollar instrument for a project 
whose whole budget is $100,000, then you are not going to build 
that instrument.  If your project must be done in two months 
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and your widget will take a year to develop, you won’t be able to 
make it or use it (this time). If you can make that widget in the 
background, however, maybe you can have it ready for the next 
project.

As always, it is a good idea to involve your boss. It lets him know 
that you are a good problem solver—or at least a thoughtful 
problem solver.  He might not support this effort, this time. 
You might have to find another way.  In that case, he might 
have already been there and done that, and have some good 
suggestions. Or it may be that another group in your company 
has already developed a very similar widget.

Why do We Love Tools?
There is something deep and powerful between problem solvers 
and tools. It does not quite meet the standard of love between 
two people, but it sometimes comes frighteningly close. Maybe 
it is because tools can relieve pain and open new worlds to us.

Imagine driving nails with your hands.  Imagine cutting thick 
wires with your teeth. Both would be painful. Or imagine being 
the first person to put a sample of blood or pond water under a 
microscope and experiencing the pure joy of discovering a whole 
new world.

I have carried a quote in my head since college.  I had always 
thought it was attributed to Arthur C.  Clarke, the science-
fiction writer, but I have been unable to confirm that, even after 
extensive research. If you will please forgive the gender-specific 
form of the expression, it was this: “Man made tools; then tools 
made man.”

Do you know the true source of this quote? Is my wording 
so mangled as to hide its origin? I would really like to know 
the correct quote and attribution.  Send me a postcard, 
drop me a line, an email would do just fine.
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Measurement, Calibration, and Common Sense
Because I am discussing tools, there is one additional topic that 
I must address. When you make a measurement, you want to 
know that the value you get is correct to within some small error 
that you expect to be insignificant.  To do that, you calibrate 
your measurements. This sounds very sophisticated and formal, 
and there are certainly many publications and standards for 
measurement. For example, a portion of the ISO-9000 series of 
quality standards are committed to calibration.

As an aside, ISO-9001 can nearly be summarized as:

1.	 Plan to do something.

2.	 Say what you do (in writing).

3.	 Do what you say.

4.	 Verify that you are doing items 1-3.

5.	 If it breathes, train it.

6.	 If it doesn’t breath, calibrate it.

7.	 Hold management and all employees accountable for 1-6.

How did this passion for calibration turn into obsession? It 
certainly started simply enough.  Let’s say you are making 
widgets that have a hole in them. You drill this hole with a very 
nice drill press. Maybe your customers want to hole to be 0.25 
inches in diameter because they stick a bolt with that size shaft 
into the hole.

If you periodically measure the hole in your widgets, you find 
that as time goes by, it is getting smaller. Eventually, you might 
come to realize that some tiny portion of the drill is wearing 
away every time the tool makes a hole. Aha! So you build a little 
test fixture. When the drill gets smaller than a certain size, you 
throw away that drill bit and put in a new one.

That’s calibration. Of course, you also have to decide whether 
there is any wear and tear on your little diameter test fixture. 
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Do the holes in the test fixture get bigger over time?

You want some traceability on the measurement that tells you 
the test fixture is the right size. Maybe once a year you check 
the test fixture. Every time you do that, you write it down. And 
once in a while, you audit those test records to make sure you 
don’t forget.

This all seems pretty straightforward.  You understand the 
general concept, the methods, and the record keeping.  The 
problem is when this suddenly swirls into an ISO-9000 
priesthood.  You begin paying outside companies big bucks to 
calibrate every single instrument.  Mysticism surrounds the 
actions of the calibration company.

Oddly, it rarely occurs to folks that they could calibrate a few 
key devices using that outside company and then cross-calibrate 
their remaining devices (instruments) in-house.  Yes, it takes 
more effort. Yes, you have to understand all of the fundamental 
parameters that your instruments can measure (for instance 
voltage, time, mass, and so on).  You would have to calibrate 
some primary instruments to traceable standards or obtain new 
instruments periodically that are calibrated by the vendor to 
traceable standards.

Ultimately, what you care about is simply how accurate your 
measurement device is and how accurate your measurement 
needs to be. (Here I am talking about accuracy, not precision.)

“How accurate does your measurement need to be?” can be 
reworded as “How much error do you allow in the measurement?” 
Clearly, you need to know how much error comes from the 
measuring device and all of its accessories. That’s it, folks. Not 
much magic, but it does require a lot of care.

My experience here is that the best problem solvers have a really 
good understanding of the typical and worst-case errors from 
their tools. They have common-sense understanding of how to 
verify that their tools are not broken, not worn out, or telling lies. 
They understand the difference between accuracy and precision.
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Then again, “common sense” turns out to be not so common….

   Tools and Toolmaking

1.	 Practice, practice, practice until the tool becomes an 
extension of your mind.

2.	 Choose the best tools that your organization can afford and 
then make it work. Be creative and don’t blame your tools.

3.	 Think about making special tools when that is necessary, 
reasonable, and appropriate.

4.	 Calibrate your instruments and keep good records of your 
calibrations.

5.	 Understand accuracy and know the common sources of 
error in your measurements.
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Zog suddenly realized that he needed a much better tool.
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Troubleshooting Complex Systems

It is all well and good for me to sit here writing lots of little 
checklists (What do you know? What don’t you know? Etc.) 
and giving you guides to finding out the things you don’t know. 
But in the end, you are going to be the person confronted with 
debugging some incredibly complex system. It won’t be a system 
with only three blocks; it won’t have only hardware or only 
software; and it won’t arrive with lots of good instrumentation 
that lets you quickly see what is going on behind the curtains.

When that happens, there are some rules to help you:
●● Rule 1: Don’t panic.

●● Rule 2: Get organized.

●● Rule 3: Be methodical.

●● Rule 4: Record your work.

●● Rule 5: Be persistent.

●● Rule 6: Ask what changed

●● Rule 7: Localize problems.

Rule 1: Don’t Panic. 
Your calm attitude will help others stay calm as well. Conversely, 
nothing inspires panic in your coworkers like seeing it on your 
face. Even if you have no confidence in your ability to fix this 
problem, pretend that you have loads of confidence. There will 
be plenty of time and energy later to waste on mindless panic.

Rule 2: Get Organized. 
Gather your information and make sure it is readily available 
to you in whatever form is most convenient. If you work from a 
tablet or notebook computer, make sure you have collected all 
the files you need and have the necessary reader and viewer 
programs installed and working.
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Do you need to keep your files secured? Different jobs have 
different levels of required security. Certainly, in some jobs, it 
would not matter if your entire computer and all of your files 
were suddenly exposed to the public.  You (should) already 
know how sensitive your project information might be, so take 
appropriate care.

Use appropriate tools to protect your critical information. 
Computers get borrowed, lost, and stolen.  There are ways to 
protect private information without making a computer unusable 
for other employees.

Do you need a lot of different passwords to access these files? 
Take the time to set up a secure password manager.

Is it more appropriate to use printed copies and physical binders 
in your work? If yes, feel free to create one or more loose-leaf 
binders with the critical information you are going to need. 

Even with all the computer technology we have today, it can 
sometimes be helpful and reassuring to be able to reach for a 
printed reference. You can scribble notes onto these pages and 
keep track of your short-term progress there.  Just be sure to 
convert your notes and discoveries back into electronic form 
when you need to distribute that information as a project or 
management update.

The best time to get organized is before you need to. Once a crisis 
hits, it can be difficult to keep everybody waiting while you sort 
out the documentation.

Rule 3: Be Methodical. 
I am not consumed in religion about which debug method(s) you 
should use. Whichever path you choose, be sure to follow the 
method as completely and carefully as possible. Jumping from 
method to method only creates confusion and frustration. Erratic 
choices make it more difficult to communicate your thinking and 
definitely more difficult for other folks to follow and reproduce 
your work.
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Rule 4: Record your work as you do it.  
After all of the times that I have emphasized the need to write 
it down, do you think I won’t mention it again here? So much of 
work is about communication. Get it documented and make sure 
that what you have written (or photographed or drawn) is clear 
and has meaning.

Rule 5: Be Persistent. 
Don’t give up at the first sign of trouble. There will be plenty of 
setbacks and many ideas won’t work. Constraints will hinder 
every project. You will never have enough time or money. That is 
okay. What matters is that you develop the aptitude and attitude 
to solve problems big and small.
There are going to be times where you will try everything you 
can imagine and still will not find a solution to a problem. You 
will then try everything other people suggest and still won’t 
find a solution.  You might loop back several times: following 
suggestions, making changes, running tests and experiments 
and still no joy.

At this point, you must not become discouraged. You can solve 
this problem. But you might need to develop an ability to keep 
trying, even when your task seems impossible or improbable. 
You are going to need persistence.

The Enthusiastic Rooster

8 Once Upon a Time, a farmer needed a new rooster. He 
purchased a strong, brightly colored rooster at the local hatchery, 
and then placed it into the barn yard. He was pleased to see 
the rooster immediately began chasing and mating with various 
hens; doing a rooster’s job with great gusto.

Now in stories like this, people and animals can talk to each 
other.

After about a week, the farmer stopped to have a chat with the 
new rooster.
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“Rooster,” he said, “You need to pace yourself. I see you working 
all day, every day.  I am afraid you will wear yourself out too 
quickly. I don’t have the money to buy another rooster this year. 
So please, just slow down a little and take it easy.”

The rooster quickly replied, “Love it, Love it, Love it! Can’t get 
enough, can’t get enough!”

The next week, the farmer saw the rooster chasing some geese 
across the barnyard. “Hey, cut that out! I warned you that you 
would wear out if you keep doing that! And your job is the hens, 
not the geese!”

The rooster simply says, “Love it, Love it, Love it! Can’t get 
enough, can’t get enough!”

The next day, the farmer sees the rooster chasing a pig. Although 
impressed with the rooster’s ambition, he repeats his previous 
warning.

The rooster says again, “Love it, Love it, Love it! Can’t get 
enough, can’t get enough!”

And on subsequent days, the farmer sees the rooster chasing 
ducks, dogs, cats and even horses across the farm fields. Again, 
he cautions the rooster to slow down.

The rooster only repeats, “Love it, Love it, Love it! Can’t get 
enough, can’t get enough!”

Finally, the farmer comes out one day and discovers the rooster 
laying in the dust, eyes closed, face up to the sky, one wing 
spread out at an awkward angle.  The farmer shouts angrily, 
“Darn-it rooster! I told you to slow down! Now you done went 
and got yourself all busted up and I can’t afford a new rooster!”

The rooster rolled open one eye to the farmer, waved a wingtip 
in front of his beak, “Shhh!” He whispered, then pointed up into 
the sky and winked at the farmer, “Buzzards!”

Sometimes you are going to need a lot of persistence to solve a 
problem. 
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You will try so many things that don’t work that your head 
will be spinning. When you are chasing multiple theories, some 
experiments will produce no change. Some experiments will show 
confusing results, because you will see some random variations 
that have no significance to your problem.  

It really helps if you “Love it, Love it, Love it!”

Rule 6: What Changed? 
Be sure you know which kind of problem you are solving. Are 
you working on a design and development problem? Or are you 
trying to repair something in the field that previously worked? 
The difference between these is huge. In the first case, you don’t 
actually know that the system has ever worked correctly. In the 
second case, you (mostly) assume that the design was capable or 
working correctly and that something specific to this system has 
broken.

Rule 7: Localize Problems. 
The most difficult challenge in complex systems is to figure out 
where the problem really exists. Is it a hardware problem or a 
software problem? Is it an electrical problem or a mechanical 
problem?
Be very careful about jumping to cause at this stage. Let’s look 
at a very simple problem, which can quickly become complex.
Suppose you have an electrical push button that is used to tell 
your system to take some action. You find that every time that 
button is pressed, the system does the same action two, three, or 
four times—even though you pressed the switch only once.
Many engineers will quickly recognize this as a common problem 
called keybounce. Although the human time-scale observation 
is that you have pushed the button only once, a fast electrical 
system will see the contacts connect and disconnect several 
times before settling to the next state.
So what kind of problem is this? It turns out that there are at 
least five different possible causes:
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●● Mechanical: The keybounce could be a mechanical 
issue.  If the hardware and software are designed for a 
maximum of 100 milliseconds of bounce (settling) time, 
and the selected component is specified to meet this 
requirement, it could be that something in the actuation 
lever is causing multiple actuations.  For example, switches 
are sometimes used as part of a navigation cluster, with 
up, down, right, and left buttons.  The cluster design might 
create accidental actuations from pressing adjacent buttons.

●● Electrical: It could be that the electrical design 
was intended to de-bounce a 100-millisecond 
settling time, but the designer mistakenly used 
too little capacitance in the circuit.  Occasionally, 
multiple pulses could be seen by the software.

●● Software: In some cases, the hardware and 
mechanical teams might have specified their 
components and interfaces such that they expected 
the software team to de-bounce the incoming signal 
with no help from the physical implementation. It is 
possible that the software implementation is not doing 
a good enough job of removing the key bounces.

●● Component quality: It is possible that a 100 
millisecond switch settling time was specified by the 
vendor, but simply is not supported by the existing product.  
The component might not be as good as the vendor claims.

●● System design (interface specification): This fifth 
answer is often the most painful.  Maybe the problem 
can be localized, but not to one specific skill area. Rather, 
it can be localized to the points at which two or more 
blocks come together. In this case, you can say the fault 
is a system design or interface specification error.  

As an example of this fifth failure, the pushbutton switch might 
have been originally specified as needing to be better (less) than 
100 milliseconds of settling time from an actuation.   A switch 
with a really fast settling time (less than 10 milliseconds) is 
purchased for prototypes.   The software engineer realizes that 
his code is far too slow and tolerant for these excellent switches 
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and changes the code to give a quicker user response.    The 
hardware engineer does not see any need for extra circuitry for 
hardware de-bounce.  The prototypes are smashingly successful 
and everybody is happy.

Then the production samples arrive and all of them show 
multiple keystrokes for every push.   After a long and painful 
investigation, the team finds that a different switch has been 
purchased for production. 

This new switch meets the written design specification.  
However, the entire design team had created a new (unwritten) 
expectation of using the better switch component.  In a very real 
sense, the failure occurred because a part that was too good was 
used during development.

Fixing the design might be done several ways:
●● Changing (back) to the better switch: 
This would cause increased cost and production 
delay while new parts are purchased.

●● Adding hardware circuits to remove switch 
bounce: This would cause huge schedule delays and 
require re-certification of much of the hardware design.

●● Changing the software architecture to support 
a longer de-bounce period: This will cause a schedule 
delay and additional cost because a new software approval 
cycle must be started with an outside third-party.

There might be no good, happy, satisfying answer to this example 
problem. You may be forced to select a solution that minimizes 
one kind of pain over the others.

Compliance Engineering
I want to take note of a particular area that creates grief for 
many projects. In addition to the functional requirements for a 
system, there are often requirements for certain kinds of stresses 
or performance of a product that do not directly relate to the 
(normal) behavior of the product. These might be tests like UL 
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safety, or environmental checks such as drop - tests, acceleration, 
shock-and-vibration testing, impact testing, radiated or 
conducted EMI, or radiated or conducted susceptibility. These 
might also be for compliance with third-party agencies like 
Dolby Laboratories, HDMI, or USB certification.

Too often, these tests are pushed to the very end of a project. Many 
times, this delay in testing is because you need to have more 
of the system development completed before you can execute a 
given test. The worst aspect is that too many managers regard 
these as “victory lap” tests that simply demonstrate you have 
done a great job instead of seeing these tests as “design tests” 
that help you track the overall quality of your system design.

If you view these as design tests (integral to the process of 
creating your final product), you will be much more likely to 
ship a high-quality product, on-time and within budget. If you 
view these tests as unnecessary hassles where somebody is just 
trying to make your life difficult, you will find your life quickly 
becoming difficult and full of hassles.

An Example of a Real-World Complex System 
Problem
8 Once upon a time, there was a complex electronic 
system that had finally reached the point where it was believed 
to be ready to build in a factory. The mechanical packaging was 
solid and had passed all stress testing.  The electrical design 
had passed functional testing on every circuit block and all 
compliance testing had passed.

The system on a chip (SoC) in this product incorporated at least 
five different processing cores, all directed by a main processor. 
The coprocessors communicated with the main processor through 
interrupts and shared memory mailbox structures.

The software was late (as software always seems to be), but not 
having 100% perfect software was not viewed by management 
as being an impediment to running the factory. After all, this 
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was a communications product, where new firmware other than 
the security boot loader could quickly be downloaded to every 
sample in the field.

The command was given to start, and the factory began producing 
hundreds of units per day. The first 100 samples were tested, 
and a surprising number of them crashed, showing a mostly sky-
blue output screen with corrupted characters. Between 3 and 5% 
of each production group showed this problem. This was far too 
many failures and would ruin the economics of the already low-
margin product.

A team was assembled to investigate.  Brian, a hardware 
manager, was tasked with identifying and fixing the problem.

Samples of failing units were shipped from the factory to the 
design centers. Tests showed that the defective samples indeed 
would fail to boot. However, after many attempts, a given box 
would sometimes boot successfully. That same box would then 
boot successfully every time, even if booted up hundreds of times 
over the next few hours.  If that same sample sat unpowered 
overnight, however, it typically would fail to boot up correctly 
the next morning.

The problem appeared to be extremely intermittent. Bad samples 
were very likely to continue to behave badly after a long power-
off time.

While investigations continued in the design centers, the factory 
put a new batch of samples through repeated testing. Previously 
isolated samples were also retested.  An alarming pattern 
was noted.  Samples that were previously declared bad would 
typically continue to show up as bad. However, samples that 
were previously declared good would sometimes move to the bad 
column in later testing. With repeated testing, 7% of the units 
were now listed in the bad column. It appeared that further tests 
were likely to move even more samples from good to bad. The 
disaster was growing.

A major complicating factor was that the product’s SoC had to 
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be “locked” with special security measures for the production 
samples. This meant that normal test code could not easily be 
loaded into the main IC to allow diagnostic code to be run. Only 
“signed” code could run on the production IC; getting generic 
debug code signed was a big security risk that nobody was 
willing to support.

A further complication was that there were many teams working 
on the software.  The SoC vendor provided most of the low-
level hardware drivers because they understood the internal 
functions of all of the hardware cells and coprocessors.  The 
boot code and much of the application layer code came from a 
third-party vendor. Brian’s company had to provide drivers for 
special hardware on the PCB and to do all of the integration of 
the various pieces.

Brian was called into his manager’s office for a meeting with his 
boss and his boss’s boss. The upper-level boss had a background 
in software development and managing such projects.

The time required to ship samples around the world and the 
investigations at multiple design centers had ballooned the 
delay in production startup.  The factory was threatening to 
dump the entire project. The main customer for this product was 
threatening to cancel their entire order. The pressure was on.

Brian’s boss’s boss began the conversation by stating that this 
was clearly a hardware design problem. His logic was that if the 
code were bad, given that the exact same code was loaded into 
every box, they should all either be bad or be good.

Brian said no. This was almost certainly a software problem. 
Brian’s boss rolled his eyes with a look on his face that said, “You 
and I had better be updating our resumes if you continue down 
this path.”

“But my logic is perfect!” said the boss’s boss. “There is no way 
the same software can be both good and bad just because it is in 
different boxes.”
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“Well, there is one specific way that the same software can be 
the cause of behavior like this,” Brian replied.  “I have seen 
something like this before in a previous job.”

At this point Brian’s boss looked like he wanted to crawl under 
the table. This argument was headed for nothing but trouble.

“Here is how this can happen,” Brian continued. He pulled out 
a dry-erase marker and began scribbling little drawings on the 
whiteboard.  “The problem might be uninitialized variables in 
the code.”

He continued, “The main processor comes along and is finding 
some kind of value or pointer that was not initialized to a 
known value.  That processor then takes a jump or selects an 
action based on the value it finds in that location. The result 
is completely unpredictable.  If the DDR DRAM cells for that 
specific memory location happen to come up in a certain state, 
then the box will boot successfully. But if they happen to power 
up with the wrong value, then that box can crash somewhere 
during the boot process.”

Brian went on, “I have verified with the software team that the 
basic boot loader does not initialize all of the memory to a known 
state such as all zeroes during startup. They were worried that 
such code would take too much time during power on. But they 
say any code should be setting up the variables before using 
them, so they don’t like my explanation either.”

The boss’s boss pounced. “I know that DRAM stores values onto 
capacitors in each cell. All of those millions of little capacitors 
should discharge over time when the box is off. So the DRAM 
should be completely set to zero after a long power-off time, and 
long power-off time is the condition giving us trouble!”

Brian responded, “Yes, I can see why you might think that. 
However, we are talking about very tiny capacitors and very little 
charge stored on them. Everything in that IC design is intended 
to keep the leakage from that capacitor very low. So some cells 
will have the ability to store some charge for hours or even days. 
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That charge ends up looking like a one after the DRAM starts 
up. There is also some random noise that can couple a little extra 
energy into any given cell during startup. Once the refresh cycle 
starts running, even a tiny amount of charge might refresh up to 
ones instead of zeroes.”

Brian continued, “There is a quick test that shows this behavior. 
If you print out the contents of memory before the code runs, you 
will see a random pattern of ones and zeroes. Every sample will 
be different. Yes, the general trend is to mostly zeroes, but it is 
never consistent or perfect.”

The boss’s boss was still doubtful. They ran through the complete 
argument cycle a few more times.  Eventually, he decided (as 
good bosses do) to let Brian hang himself with his own argument. 
There would be time enough later to replace Brian if he could not 
come up with a good solution. Success would eventually reflect 
well on all of the bosses, and failure would mean that Brian had 
made himself an easy target for sacrifice.

In the meantime, Rajesh, a senior programming expert for the 
company, had been brought in to see if he could capture anything 
useful from the locked software.  His efforts paid off.  He was 
able to report that a failing box consistently reported a specific 
coprocessor initialization failure just before the system crashed.

Armed with this new information, the team was able to bring 
in a field applications engineer (FAE) from the SoC vendor. He 
arrived with a laptop loaded with all of the driver code and the 
complete code release history. The team briefed the FAE on the 
symptoms and gave him a detailed problem report, including the 
latest error uncovered by Rajesh. Before the FAE would even 
look at their failing sample, he asked for a few minutes to study 
the release notes.

It was not long before he was smiling. “Here is the deal,” the FAE 
said. “Your software team has to pick a release point for the drivers 
or they will perpetually be chasing a moving target. They cannot 
keep re-integrating day after day because they would never have 



Troubleshooting Complex Systems

157

a stable system to test. It just happens that you picked version 
9.1, which was released about two months ago. In looking at the 
release notes, I see that a bug was reported and fixed in version 
9.3, about one month ago.  The bug was unexpected behavior 
of the coprocessor system due to uninitialized locations in the 
memory mailbox used to communicate between the processors.”

A wave of relief swept over Brian. It took a few hours to build 
a new version of code that included a specific patch to ensure 
that all of the memory mailboxes were initialized before starting 
up the coprocessors. Quick testing and then long-term testing 
showed that the startup crash had been eliminated.

New code images had to be signed, and all of the development 
partners had to be updated as to a new schedule. Hundreds of 
boxes had to be reworked with new code images for the boot 
loaders.  Tens of thousands of boxes were then manufactured 
with the new firmware. The problem had been solved.

And Brian got to keep his job for a while longer (although nobody 
lives happily ever after, even in debug stories like these).
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Troubleshooting Complex Systems

•	 Rule 1: Don’t panic.

•	 Rule 2: Get organized.

•	 Rule 3: Be methodical.

•	 Rule 4: Record your work as you do it.

•	 Rule 5: Be persistent.

•	 Rule 6: Ask what changed.

•	 Rule 7: Localize problems.
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Intermittent Problems

Intermittent problems are probably the most frustrating and 
difficult problems we ever tackle. I use the term “intermittent” to 
mean problems that do not occur continuously or in all instances. 
Maybe your computer boots up successfully 98 times out of 100 
attempts. That means it fails only twice in 100 attempts. You are 
going to need to do a lot of testing to find that problem. In many 
ways, the 98 successful attempts are useless to you unless you 
are doing some very deep captures on the internal operations. 
Oddly, you must get past the “good” results to find and examine 
the bad cases.

You usually need to see the failure and capture information 
about the circumstances of that failure to get any kind of clues 
about the failure. But when the failure is not happening very 
often, you don’t have much opportunity to gather information or 
clues.

Reproduce the problem
As discussed in previous chapters, the first thing you need to do 
is to reproduce the problem. It is important to note here that you 
must reproduce the problem that has been reported. If you find 
a bunch of other problems, you might need to fix some of them or 
you might need to note them and continue testing until you can 
reproduce the problem you initially were trying to solve.

If you can never reproduce the reported problem, you might 
need to go back and confirm the initial problem statement.  It 
is possible that the first reports were just badly described, and 
the problems you are observing really do match the intended 
complaint. But be sure to update the problem statement, or else 
everything you do that follows won’t make sense to anybody else.

Try to Change the Rate of Failure
Let’s assume that the problem you observe does match the 
original description, but the “when” is not often and there is no 
obvious correlation of the problem to a system variable or an 
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environmental condition.

One fairly obvious plan of attack is to arbitrarily change 
something and see what happens. Of course, you can be smart 
about this and choose a factor that already has aroused your 
suspicions during your brainstorming about what you don’t 
know.

For example, if you feel like the failures seem to happen only on 
a hot day, but you don’t have good data to support this vague 
belief, then you can run some experiments in which you vary 
the system temperature.  If the failure rate does not change, 
that guess was not very good—but you now can record this in 
the things you know: “This system is not failing because of its 
temperature.”

Increasing Failure Rates can be just as Informative 
as Decreasing
Suppose your previous testing showed a sudden increase in 
failures as the temperature rises. “Oh no!” You smack your head 
and exclaim, “We can’t get any more heat out of the system!” 
Don’t panic and don’t get ahead of yourself here.

Associate the Failure
That increasing failure rate could be great news.  You might 
eventually find that you have just one sensitive component that 
can be upgraded. You might find that a material specification 
forgot to include a temperature coefficient. The important thing 
is that you now have something that is known to be associated 
with the failure.

Be very careful with intermittent failures that show only a weak 
correlation to some variable or condition. You might be seeing 
patterns that you want to find instead of finding patterns that 
are reproducible and verifiable.  Write down what you think 
you are observing and then get a neutral observer to share his 
opinion.
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Try Parallel Testing
You can do parallel testing to increase the number of failures. 
This can be expensive because you might need a lot of test 
equipment to support multiple systems. Nonetheless, parallel 
testing is sometimes the only way to increase the number of 
failures for an intermittent problem.

Change Only One Variable at a Time
You know this.  It is in every basic science text that teaches 
experimental methods.  You still will forget it, however, in 
moments of weakness, in moments of high management 
pressure, or maybe from boredom or inattention. Write it on the 
back of your hand or put up a big sign on the wall. Change only 
one variable at a time.

Collect More Information for Each Test
One key to quickly solving intermittent problems is to have lots 
of good recording instruments hooked to the system when the 
failure occurs. This increases the knowledge you have about the 
system just after and maybe just before the failure happened. 
Collect all of the data into a single folder and label it clearly with 
an identifier for that test cycle.  Somebody else can study the 
failure while you are capturing the next one. (Or, if you prefer, 
let them do the next test run while you study the data. But be 
sure that they do the test the same way you did it, or else you 
will have an added variable.)

The Intermittent Transmitter
8 Once upon a time, Matthew   worked as the chief 
engineer at a college radio station, maintaining and improving 
the physical systems while getting his degree as an electrical 
engineer. He possessed a First Class RadioTelephone Operator’s 
License, a government-issued authorization to control, repair, 
and modify those transmitting devices that filled the public 
frequencies with broadcast signals.
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After graduation, Matthew took a job with a large corporation 
that designed and manufactured broadcast radio transmitters. 
The company had received complaints about a particular 
installation. This station transmitted just fine all day long and 
deep into the night, but the transmitter shut itself off at 4:00 
p.m. every day.

This was a huge problem, because radio transmitters are 
often located far from populated areas.  This is because such 
transmitters typically need a lot of land to allow them to have 
very tall transmitting antennas.  Stations use sophisticated 
remote-control systems to monitor and switch various functions 
from the control room and studio facility, which is typically 
located in the heart of the city being served by that station.

Thus, every time the transmitter shut down, somebody had to 
drive out into the countryside and restart the transmitter. As a 
result, the station was off the air for nearly an hour whenever 
this happened. And it was happening far too often—pretty much 
every day.

The station operators found that the transmitter was tripping 
a protective circuit breaker, which, for safety reasons, was 
not accessible by the remote-control system. It was considered 
important that the system not simply be restarted without 
a human to make sure that nothing else had overheated or 
overloaded.  The designers of the system did not expect this 
safety device to activate under normal circumstances. In fact, it 
had never been observed to activate in any other installations, 
anywhere or any time. Never, ever. It was one of those protective 
devices that designers put into a system “just in case.”

During every visit to the transmitter, the station engineers 
found nothing wrong. They simply reset the circuit breaker, and 
the transmitter would spring back to life, with all measurements 
and indications showing normal readings. The station could not 
afford to be off the air every day and could not afford to have a 
person sitting at the transmitter all day, just to reset the circuit 
breaker.
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The company that made the transmitter received a problem 
report, and that meant that Matthew got the call.

He asked the station representative if they had ever had a 
person sitting at the transmitter when the problem occurred. 
The representative said that indeed they had, but that person 
had not observed anything before, during, or after the failure. 
The transmitter was working fine, then suddenly kicked off. 
It came back as soon as that person reset the breaker, which 
had taken only a few seconds from the time the circuit breaker 
tripped.

So Matthew headed for the town where the station was located. 
When he arrived on a Monday around noon, he picked up an 
engineer from the station’s main office. Together, they drove out 
to the transmitter site. It was a crisp fall day, with the weather 
just starting to turn cold in the evenings.  But the days were 
clear, with deep blue skies, and the colors in the trees were 
magnificent.

During the drive, Matthew was surprised to learn that the 
transmitter had not shut down the previous afternoon.  This 
could be a real headache, because some intermittent problems 
can seem to “heal” themselves, making them even more difficult 
to find.

When they arrived at the transmitter, Matthew did a quick 
survey of the location. The transmitter was located in a small 
brick building, not far from the country rock-and-gravel road 
that they had driven down to reach the site.  Occasionally, a 
pickup truck would scoot down the road, but the total traffic this 
far from town was very small.

The transmitter installation was neat and well-maintained. The 
incoming power connections were solid, and the power-source 
voltage at the transmitter input was steady.  There was no 
indication of excess heating, and the fronts of the transmitter 
panels were cold or slightly warm to touch.  All of the signal 
measurements along the chain were within specification.  All 
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they could do was wait.

They sat in chairs facing the transmitter. The air conditioner 
and cooling fans in the equipment racks hummed along with 
the reassuring sound of a rushing river. Eventually, 4:00 p.m. 
arrived, and the transmitter kept running. Then, at 4:02 p.m., 
the excitement started.

Out of the corner of his eye, Matthew noticed the needle on the 
power-output meter seemed to swing upward. Then, with a loud 
click, the circuit breaker on the exciter tripped. Immediately, a 
loud alarm bell began to ring. Within seconds, the phone also 
began to ring as the control room back in town was calling to 
demand that the transmitter be put back onto the air.

Matthew reached up and hit the Alarm Mute button. The station 
employee picked up the phone, but said nothing as Matthew 
suddenly motioned to him with a finger across his lips, hissing 
“Shhh!” The station employee was mystified as Matthew quickly 
stepped away from the transmitter and walked over to the 
window. Craning his neck back and forth as he looked out the 
window, he nodded and then scratched behind his ear a bit. He 
quickly stepped back to the transmitter and lifted the circuit-
breaker lever, which restarted the transmitter.

The station engineer confirmed with the control room that 
everything was okay, and then hung up the phone. “What do we 
do now?” the station engineer asked. “I’m going to take a nap,” 
Matthew replied.

The station engineer looked like he had been slapped.  “What? 
We have to fix this thing! Now!”

Matthew calmly replied, “Anything we do at this point in time 
would further disrupt your station’s broadcast schedule.  But 
now that we have a clue to work with, we can wait until signoff 
at midnight and then we will fix the problem.”

“Clue? What clue? It just did the same thing it did all last week, 
and you don’t have any additional information! And you ran away 
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from the problem. You weren’t even looking at the transmitter!”

Matthew smiled. “I cannot be 100% certain, but I think I know 
the cause of the event and I think I can guess where to look for 
the problem. We will need to wait until the station is off the air 
if we want to debug this down to the specific component. Until 
then, we can just relax and maybe read over the schematics 
again.”

The station engineer was not happy, but he could understand the 
logic behind Matthew’s choice not to disrupt the station operation 
any further. Broadcast stations make money by staying on the 
air and transmitting commercials, so it made a lot of sense to 
keep the transmitter running during those lucrative programs.

When midnight finally came around, the station engineer was 
ready to see what magic Matthew might have up his sleeve.

After the final signoff, they manually brought the transmitter 
back on line and played a brief audio recording, identifying the 
station frequency and assigned call letters.

Matthew then walked back and forth in front of the transmitter 
racks.  Pausing in front of the exciter, he reached back and 
delivered a solid strike with his open hand to the face of the 
system. The circuit breaker two racks over on the transmitter 
clicked over, and the transmitter was off. Matthew flipped the 
breaker and repeated the exercise a couple more times. Once or 
twice, depending on where he struck, the breaker did not trip, 
but mostly it did.

The station engineer was dutifully impressed. “Okay, now that 
is cool. You have to tell me what is wrong, and how you figured 
it out.”

Matthew started slowly, but talked faster as he went along. 
“When we had the event at 4 p.m., I noticed the transmitter 
power meter ticked upward just as the circuit breaker popped. 
But more importantly, I realized that I was hearing and feeling 
something at the same time.  It was a very low frequency 



An Engineer’s Guide to Solving Problems

166

vibration—a rumble, just something vague that I had not heard 
before or long after the event.”

“But why did you walk away from the transmitter then? Didn’t 
you want to hear what part in the transmitter was making the 
noise?”

Matthew replied, “No, we never heard any noises like that 
coming from the transmitter. It had to be coming from outside 
the building! I looked out the window, and sure enough, there 
was a huge—no, I should say gigantic—grain truck passing by 
out on the road. I will bet that truck has been collecting from 
the fields north of here, and then it comes by fully loaded every 
afternoon around 4:00 p.m. If I am correct, then we must have 
something a little bit loose in the system that is changing based 
on the vibration. Do you remember that the system did not fail 
yesterday? Well, yesterday was Sunday, and I’ll bet they take 
Sundays off to rest.”

The station engineer was catching on now, “So you hit the section 
of the circuit you thought might be most likely to be sensitive! 
You were trying to reproduce a vibration failure.”

“Yes.  The transmitter final amplifier stage is built with very 
large, heavy, solid components.  It seemed less likely to suffer 
from a vibration-related surge, although the problem might 
have still been there. But the exciter has lots of tiny, sensitive 
components, so my first guess was to tap the equipment frame 
in that area.”

Because Matthew and his new friend had a good idea of where 
to look, they then connected an oscilloscope to the output of the 
exciter, keeping the output amplifier turned off. They could see 
the exciter output jump higher when they tapped the frame. They 
slowly worked their way across the various circuit boards, and 
then across the assorted components until they could identify 
the most sensitive area of one circuit board. They found that a 
particular variable resistor (called a “trimmer”) seemed to be the 
most sensitive spot.
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This made a lot of sense to Matthew because trimmer resistors 
are constructed with a slider mechanism that rubs against 
another piece of material. The further down the track the slider 
goes, the higher the resistance. However, if the slider is not built 
correctly, or if some excess material gets between the slider and 
the track, then the resistance of the device can jump around in 
unpredictable ways.

They replaced the trimmer resistor and then reassembled the 
exciter system. The mysterious sensitivity to external mechanical 
disruption (hitting it) was now gone.

The station engineer was happy to have been part of the debug 
process and recited what he had learned back to Matthew. “It 
seems to me that you fixed the system by doing less, but by 
observing more carefully. You heard or felt a vibration and then 
simply looked more widely to see if the problem was internal 
to the system or could be external. Once you had a clue about 
a stimulus that could cause the problem, you then waited until 
an appropriate time to simulate the same kind of stimulus. That 
stimulation—hitting it, could be repeated until you homed in on 
the specific area, and finally identified the specific device causing 
the problem. That is really good debug work!”

“Yes,” said Matthew. “And now we can feed back this information 
to the factory.  First, they can test these assemblies with a 
calibrated tap hammer to be sure that the variable resistors in 
these circuits are not defective. And then, if our guys are clever 
enough, maybe they can design the circuit to not require this 
kind of mechanically sensitive adjustment at all.”

The ride back to town seemed a lot happier and much quicker 
than the ride out to the transmitter had been!
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Debugging Intermittent Problems

1.	 Reproduce the problem.

2.	 Try to change the rate of failure.   Remember: 
Increasing failure rates can be just as informative as 
decreasing them.

3.	 Try to associate the failure with a variable or condition 
of the system, but watch out for superstition.

4.	 You can do parallel testing to increase the number of 
failures.  This can be expensive, however.

5.	 Change only one variable at a time. (Sound familiar?)

6.	 Collect more information for each test. 
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How to Think, Part I

In some ways, this is the most important—yet most difficult—
part of this book for me to write. Who in the world am I to tell you 
how to think? After all, I am pretty sure that you are smarter 
than I am. Okay, you might not have as much time in the field 
as I do. And you probably have not performed as many different 
roles within your skill area. But those last two are not such a 
big deal.

The bottom line is that I am offering up some wisdom earned 
the hard way: from painful experience; from finding lots of new 
and different ways to fail at something. You are welcome to take 
any of these ideas that fit and use them. You are also welcome to 
ignore or reject any of these suggestions. But go ahead and read 
this chapter. If even one single idea helps you, it will have been 
worth your time.

In every problem-solving effort, there comes a time when you 
are sure that you have a good solution. You are ready to declare 
the problem solved and move on to the next challenge. This is 
the time to be most cautious. It is natural to experience a sudden 
high after finding the answer. Exuberance fills your brain and 
can make you ignore warning signs that you normally might see.

Warning Number 1: Correlation is not Causation
If you have ever read the online technical forum Slashdot (http:// 
www.slashdot.org), you probably have encountered instances of 
the statement “Correlation is not causation.” The first few times 
I encountered this saying, it did not have so much impact. As 
time passed, however, I began to see dozens, then hundreds of 
examples of the wisdom of this phrase.

This goes to the very core of science and the scientific method. 
We believe in a general idea of causation: When this happens 
then that outcome will follow. If you hold a ball in the air and 
open your grasp, the ball will drop to the ground. We explain 
this with a story about something we call gravity. We say that 
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gravity is the cause of the ball falling.

You can repeat experiments as many times as you want and the 
outcome will always be the same (assuming you have stated and 
followed your test conditions accurately).  You develop a little 
story (a theory) that explains the action in terms of cause and 
effect. As long as your experiments never disprove your theory, 
you come to accept that theory as being an accurate description 
of reality.

The theory itself is not a fact; it is just a good story that helps 
you wrap your mind around the observed behavior. The observed 
behavior is a fact (or a set of many facts), however—unless 
somebody is lying about it. The theory is how you explain the 
observed facts. If (after many attempts) nobody can poke holes 
in a theory, it’s decided that the theory is proven and is therefore 
true.

Often, you can consistently observe two events as happening 
near to each other in space or time. We say these things are 
“correlated.” But this does not prove that one event caused the 
other. Maybe event A caused event B, but maybe event B caused 
event A. Or there might be some third factor, C, that is not so 
easy to observe. Of course, there are far more possibilities as the 
system becomes more complex.

When you only pay attention to correlation, you might start to 
believe in voodoo. Waving a chicken bone near the server might 
seem to have a strong correlation with the server not crashing. 
If you did not run an experiment in which you waved something 
else, you might not realize that the server’s failure to crash 
is really associated with any additional air movement in the 
room. In the meantime, employees would be frantically hanging 
chicken bones near every server.

One step you should take is to come up with other meanings of 
your solution. Ask and answer questions like, “If this is causing 
that to happen, then we should be able to see (measure, capture) 
this other effect at the same time.” 
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Keep this warning in your mind, and look for good examples of 
it to teach other folks around you: Correlation is not causation.

An appropriate cartoon can be found at: http://xkcd.com/552.

Warning 2: Your Proposed Causation Had Better 
Show Really Good Correlation.
Having just warned you to remember that correlation is not 
causation, I have to state that your theory of causation had darn 
well better show really good correlation with your experiments—
like maybe 100%. I mean really, what would you think if Einstein 
had said, “e=mc2 except on Tuesdays or at some locations in 
Australia”?

Warning 3: There Might Be More Than One Correct 
Answer.
Indeed, there might be an infinite number of correct answers, 
but some might be a little better than others.

Researchers who study the art of problem solving in an academic 
way talk about problems that are ill-structured as compared to 
problems that are well-structured. 

For example, in a classroom, you might study a problem where 
a rule is that [F=ma] (force equals mass times acceleration). You 
are given a force and a resulting acceleration, and you know 
what mass has been acted upon. This is clearly a well-structured 
problem. There must be no sliding friction, no air resistance, no 
deformation of the object, no temperature change, or any other 
nasty reality intruding into the problem.

But outside of the classroom, you might find all of these side 
effects plus some constraints in an ill-structured problem. Maybe 
for safety, the company insists that the acceleration must stay 
below a certain level. As the designer, you can make the object 
more frictional, or let it deform more easily.

Suddenly, you find that you have almost unlimited “correct” 
solutions—although some will be far more expensive, some will 
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take more time to develop, and some will not be cosmetically 
attractive to the buyer.

You need to find the center. You must achieve a balance that 
does not improve one thing too much at the expense of another 
thing.

Warning 4: You Must See If the Problem Comes Back
When you think you have a good story to explain your 
observations, and you believe you have a fix, then you should 
undo your fix and see if the problem comes back.

What if you undo your fix and the problem does not come back? 
Ah, you might be suffering from an intermittent problem, or it 
could be that your fix actually had nothing to do with the observed 
problem. In that case, it is time to go back to the beginning of 
the debug process and begin anew.  In product development 
environments, an alternative test is to apply the same fix to  
several samples. Does the fix work for all samples?

Warning 5: There Are Many Ways to Find a Good 
Solution
Avoid thinking that there is only one right path to finding a 
reasonable solution.

8 Once upon a time, Harry and Bruce worked at a 
computer design company. Harry was British with appropriate 
English attitudes. He had worked and lived in many locations 
around the world. In contrast, Bruce had never left the United 
States. Indeed, he had not ventured far from the Midwest. Harry 
was brilliant and could run through deductions at such velocity 
as to put Sherlock Holmes to shame. Bruce was methodical and 
patient—neither brilliant nor stupid, but rather somewhere 
near normal (whatever that statement might actually signify).

Several prototypes of a new single-board computer had recently 
been delivered to their company. One sample refused to start 
up, but made it far enough along during the initial memory 
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configuration to report failing results of a DRAM read-write test.

Harry printed a copy of the onscreen error messages and went 
back to his desk to study them.  Bruce took the sample to a 
workbench, where he could hook up an oscilloscope and power-
cycle the sample. Bruce probed around the processor, one pin 
at a time, watching the scope waveform produced during each 
boot cycle. Then he probed the memory controller and repeated 
the process. Pin after pin was examined, with a reset between 
each viewing. Finally, he was sure he knew what was wrong and 
walked back to find Harry.

In the meantime, Harry had been methodically studying the 
error codes, looking closely at the expected values and reported 
values for each memory write/read cycle and then comparing 
them to the memory address being tested.

Their paths intersected in the hallway.

“It’s A3 shorted to D1,” they exclaimed in unison. “Wait, what 
did you say?” asked Bruce.

“It’s A3 shorted to D1” replied Harry.

Looking down at his sheet, Bruce said “Yep, that’s what I found 
too! I see the same bizarre waveform on both of those pins and 
every other pin looks normal.”

After some inspection under a microscope, they found a 
suspicious area on the PCB where those two signals ran in 
parallel for several centimeters. Bruce ran the blade of a very 
sharp razor knife down the valley between the A3 and D1 PCB 
tracks, while Harry monitored the resistance between those 
signals. Suddenly, the resistance jumped from zero to infinity: 
The track-to-track short circuit had been removed. A tiny finger 
of stray copper had not been completely etched out between 
those close tracks, which had created the short circuit.

So who did the debug correctly? Was one method superior to 
the other? No. Each engineer found a solution using the method 
with which he was most comfortable. Neither method was more 
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correct; neither method was wrong or bad.  Ultimately, both 
methods uncovered the same defect. In this case, they even took 
the same length of time to find the problem.

Some engineers will charge ahead with a particular debug path 
and tell you, “My way will find the problem faster.” Sometimes, 
this is even true. But the warning here is to keep your mind 
open. Don’t fall into the trap of thinking your method is the only 
valid approach.

Warning 6: During Development, Never Allow a 
Defect or Problem to Go By Without Documenting 
and Fixing That Problem
If you see a problem once during development, you are likely to 
see the same problem in some or all of your production samples. 
In other words, if you see it once, you will see it again—but at 
the worst possible time.

There is an old adage about problems. If you find a problem while 
you are sketching the design, it will cost you about 5¢ to fix it. 
If you find the problem during the formal documentation, it will 
cost you $5 to fix it. If you find the problem during prototyping, 
it will cost you $5,000 to fix it. And if you find the problem after 
production, it will cost you $5 million to fix it. (You can replace 
the dollar with any unit you like—RMB, yen, or euros.  The 
general curve and the truth of this advice are universal.)

Very rarely, some problems will occur during prototyping that 
you can truly attribute to the process or materials used to create 
those samples. Maybe your prototype assemblers are just a little 
more careless than the normal production workers. (Come on, do 
you really believe that?) It is far more likely, however, that each 
instance of a defect represents a weakness in the design. Your 
design might simply be too difficult to assemble in a production 
environment.  Factory workers cannot be craftsmen, hand-
tuning each sample to perfection. The process must be simple, 
automatic, and error-proof.
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Quality experts around the world have taken a phrase from the 
Japanese and made it universal: pokayoke (ポカヨケ) which 
means error-proofing.  It is a method of thinking about the 
design of products and production processes to make them such 
that the product can only be built correctly. If Murphy’s Law is 
“Anything that can go wrong, will go wrong,” then pokayoke is 
the effort to anticipate everything that could go wrong during 
production and make the design and assembly process incapable 
of allowing those errors.

In summary, keep a complete and accurate list of every defect 
found during development. If you want a satisfactory product, 
you must hunt down and kill each and every defect.
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When You Think You Have a Solution, Heed 
These Warnings:

1.	 Correlation is not Causation.

2.	 Your theory of Causation had better show good 
Correlation in your experiments.

3.	 There might be more than one correct answer.

4.	 Undo your fix and check to see if the problem returns.

5.	 There can be multiple paths to good solutions. Your way 
is not the only way.

6.	 Never allow a defect or problem report to go by without 
documenting and fixing that problem.
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How to Think, Part II

Before you get to put a gold star on your assignment board and 
declare that you have solved a problem, you need to ask yourself 
a series of Challenge Questions. The answers to these question 
might not change anything, but the questions are designed to 
help you gain confidence in your solution—or else to go back and 
keep working.

Challenge Question 1: How Did Other People Solve 
Problems Similar to This One in the Past? 
When you are solving problems, this is an excellent question to 
ask yourself both at the beginning of the process and again later, 
when you think you have a solution.

I am not saying that you can only select from existing solutions. 
Indeed, you must not reject a unique or creative solution from 
other folks just because you have never done it that way before. 
The concept I am getting at here is that good writers are always 
good readers. It does not matter if you are talking about mystery 
novels or engineering designs. Good writers of designs are good 
readers of other people’s designs.

The best engineers are almost obsessive about looking at other 
designs. They bring an incurable curiosity to every encounter. 
They constantly want to know how other engineers have solved 
similar problems. They compare and rate solutions. Of course, 
there is a natural desire to discover that their own solution has 
the most advantages, but there is also a complete willingness to 
learn and to load up their toolboxes with more good ideas.

They spend a lot of time reading tear-down reports. They read 
current publications (magazines and trade papers) to know what 
the competition is doing and what new components might help 
their designs. Furthermore, these best-in-class engineers spend 
a significant amount of time studying cross-over design. By this 
I mean that an electrical engineer might be found reading a 
mechanical-design publication or vice-versa.
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By exposing themselves to the limits and challenges of other 
skills, they deliver better designs within their own skill that 
help rather than exacerbate the other skill’s problems. Because 
they understand more of the system, they find the center more 
cleverly. They find better balance in the design.

Good writers of design are always good readers of design. 
Seriously. I am not joking here.

Challenge Question 2: Could It Ever Have Worked 
That Way?
You might be surprised how many designs that never worked 
make it into production or even into the field. Well, in fairness, 
they probably worked a little on somebody’s desk one time—but 
they never should have made it into a factory, let alone into a 
consumer’s hands.

In addition to this question, there are some follow-up questions 
you can ask here:
●● Does this design really make sense to you?
●● Does it seem to defy some basic law of physics? 
●● Is it possible that the design “works” but is actually 
operating in some way that you or another designer did not 
anticipate?

There are lots of examples in every field of this last kind of 
failure. Sometimes, a key component is removed and the design 
continues to appear to work, even though it should not. Perhaps 
it turns out that a signal is taking a path through the design 
that nobody recognized or understood.

A classic example in high-frequency signals is where a key 
series component is removed with no effect on the signal-output 
quality! It often turns out that stray capacitance was coupling 
some signal from one place to another, going completely around 
the expected signal path.
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Challenge Question 3: Does It Work That Way Now?
It is usually pretty easy to construct an experiment or test to see 
if your design is working according to your theory of operation. 
Just as I described removing a key component in the previous 
section, you can usually perform some small modification that 
should disrupt the system.  If the disruption is not observed 
or is very different from what you predicted, then the system 
probably isn’t working “that way” now.

Challenge Question 4: Are You Suffering from 
Optimism Bias?
Sometimes, no matter how hard we try, we all fall into the trap of 
simply wanting a design to work instead of making that design 
work. We start interpreting the data in whatever way makes our 
design look best instead of recognizing upsetting anomalies.

Most companies use some kind of phased development in which 
products or projects go through a formal process. Gates are placed 
between each phase to force a design to reach a certain level of 
maturity before the project moves to the next stage. Often, the 
level of investment increases exponentially at each phase, so it 
is very logical for organizations to put these checkpoints in place 
along the way.

Many larger companies require peer reviews or design reviews 
with an expanded audience before a product can be released 
through a development gate. The intention might be noble, but 
the implementation frequently fails. Too many of the reviewers 
will have a stake in seeing the product stay on schedule. And 
independent reviewers are rarely encouraged to be as blunt and 
honest as they should; remember, it will be their turn next week 
or next month.

Too many plans and too many projects turn out like the story of 
the emperor’s new clothes: Everybody really wants to see how 
nice the clothes look, but my goodness! That dude is naked!

Find and develop a network of people who are willing to give you 
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honest evaluations. Sometimes, you will need to hold a private 
review outside official channels. Does your network agree that 
the problem is solved? Do they think the solution is reasonable 
and economical? Or are they telling you to go back and keep 
digging? It is better to hear the truth early, before you are the 
one standing naked on a stage.

Challenge Question 5: How Complete Are Your 
Checklists?
You are using checklists to verify your designs, yes? If there is the 
slightest question in your mind regarding the value of checklists, 
I encourage—no wait, I insist—that you read Atul Gawande’s 
outstanding book, Checklist Manifesto.  This slim volume tells 
you everything you need to understand about why checklists are 
the critical tool for almost any complex activity. This is one of 
those books that should be in every engineer’s personal library.

Big Debug and Little Debug
There is some kind of arbitrary dividing line between a “big 
debug” and a “little debug” during projects. I like to think the 
division is based on the number of people or the scale of resources 
that have to be applied.

Giant disasters like the nuclear-reactor meltdowns at Three Mile 
Island or Fukushima or the loss of a space shuttle are obviously 
big-debug events. But there are plenty of smaller problems that 
can easily qualify as big-debug events.

We might be able to work the definition from the reverse side. 
A little-debug problem is one that involves only you—or you 
and maybe one or two other people. There is no involvement by 
management; the product or project (or company) does not come 
to a complete halt waiting for results.

In many cases, the personal stakes can be just as high for a 
little-debug problem as for a big-debug problem.  Plus, if you 
don’t solve a little-debug problem, it can quickly become a big-
debug problem. The more hidden a problem is and the longer it 
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remains hidden, the more likely you are to find that problem in 
a spectacular and very unfortunate way.

A long time ago, I worked at Texas Instruments.  A senior 
manager there was quoted in a magazine article as saying that 
the company did not really mind bad news.  Bad news was a 
daily occurrence, he stated.  When management received bad 
news, they had resources and decisions they could take to deal 
with the problem. However, he stated, surprises were something 
different—and absolutely unacceptable. A surprise was defined 
as bad news, delayed.

Isn’t that interesting? The thing that made all the difference 
was the timing.  If you are communicating the problems and 
constraints you are battling on a timely basis, then management 
has no room to complain that you have surprised them. But if 
you hide a problem, you have no excuse when that problem later 
comes back to bite you.

Let’s look at a big-debug story. Later, I’ll switch gears and tell a 
little-debug story.

Big Debug: Global Problem Solving Team
8 Once upon a time, Alice faced a serious problem. After a 
complex hardware/software product had finally reached its first 
build in the real factory, an explosion of emails documented the 
surprising failure of about 25% of the first factory samples.

This was a classic global design from a company I’ll call 
“Misguided Corp.” The electrical and mechanical designs had 
been started in an American design center and then passed to a 
different location, halfway around the world. Certain key blocks 
of the electrical design had come from a third design center in 
Europe, which had a long relationship with the system chip 
vendor.

Misguided Corp had pushed the original designers to transfer 
the project before anyone involved thought the design was ready 
and long before most participants thought would be wise. The 
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true motivation was quickly revealed when the company laid off 
most of the original design team and all of the team at the third 
design center. Obviously, Misguided Corp was exercising a “save 
money at all costs” approach to business.

Suddenly, the newest samples of the systems were making it 
through the first few stages of startup and then crashing. No 
previous samples had shown this kind of failure.

A global team was hastily organized to investigate the problem. 
During daytime in the U.S.A., debug took place there, switching 
to the Asian design center during the night. Conference calls 
were scheduled daily, but represented a significant burden 
on both teams because they were 12 hours apart.  There was 
no overlap between normal eight hour workdays.  Both teams 
ended up putting in 16 and 18 hour days to keep communication 
flowing.

The crashes were found to be happening at different memory 
locations, during completely different sections of code. Software 
debug was minimally productive because the code seemed to be 
failing at random locations.  The one common factor was that 
the failures happened after the code began executing from main 
memory.

A brief explanation of memory controllers is required at this 
point in the story. It was not cost effective to embed the main 
memory itself into the SoC because that would increase the cost 
of that SoC beyond the cost of the memory devices.  The SoC 
vendor did, however, embed the various timing and interface 
structures necessary to drive proper signals at the proper times 
to these external memory ICs. The printed circuit-board layout 
was developed by the system integrator (Misguided Corp), but 
had been carefully reviewed by the SoC vendor.

SoC designs are amazing collections of high-speed digital and 
analog electronics. Process variations mean that some devices 
will be faster or slower than others. These variations make it 
extremely difficult to control the signal integrity of the interface 
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between the SoC and the main memory.  Timing tolerances 
for these signals are measured from tens to hundreds of 
picoseconds—values on the scale of one-tenth of one-billionth of 
a second.

Different SoC vendors have come up with clever ways to monitor 
and control the temperatures and process variations of their 
devices. In this case, a special signal source drove an external 
precision reference resistor. An on-chip analog-to-digital (A/D) 
converter turned the resulting voltage across the resistor into 
an error value that was applied to the timing and drive-strength 
control circuits for the main memory.

After many long days and nights, additional conference calls 
were scheduled with the SoC vendor. After receiving samples 
(via international rush shipments), they were able to confirm 
that the memory was failing to properly store and deliver data, 
but they were not able to identify a clear cause.

Experiments were run in multiple design centers to see if there 
was some kind of temperature or sample-to-sample sensitivity. 
Some samples showed a slight temperature and voltage 
dependency, but in general, “good samples” were mostly good 
and “bad samples” stayed bad independent of temperature, 
voltage, or other environmental conditions. The outliers in the 
data were troubling and inconsistent, almost like random noise 
in the experimental results.

Long multinational conference calls continued. Email summaries 
and new action items followed each call, but progress slowed to 
a crawl.

As each new result was acquired, a running progress report 
was generated. These reports were shared to a large audience, 
including Alice in the Far East design center.

One day, the American design center reported a breakthrough. 
They had a limited number of “bad” samples but found they could 
get those samples to move to “good” if a specific filter capacitor 
was removed.



An Engineer’s Guide to Solving Problems

184

Digging through the ECN history and the recollection of the 
engineers, it was determined that this particular capacitor had 
been added at the insistence of engineers at the third design 
center, who had been recognized as the experts on this portion 
of the design.  Unfortunately, those engineers were no longer 
available to support or explain their design change.

During the many debug experiments, some small weaknesses 
had been uncovered in the product design. None were sufficient 
to cause the failures, but could be seen to contribute marginally 
to the failure point on a few of the failures. Fixes were known 
for these weaknesses and could be applied to any sample, but 
they were not observed to completely fix any units. Thus, the 
discovery that removing this “essential” capacitor had fixed the 
problem on a few samples was a stunning and confusing result. 
Everybody was struggling to explain this behavior.

Alice asked the SoC vendor to create a software routine that 
could read the automatic correction value one million times in 
succession and report a histogram with the number of times each 
possible value was read. It was a tool nobody had ever needed 
before, but now seemed quite valuable.  This tiny software 
routine turned out to be the key to understanding the problem.

On samples without the capacitor, the A/D read one or two 
adjacent values during startup. But samples with the capacitor 
showed a wide spread of values from the A/D converter.  The 
automatic compensation circuits were therefore picking a 
correction value that sometimes was far outside the normal 
range predicted by the temperature and process variations. 
Clearly, noise was being coupled into the A/D by the addition of 
the capacitor.

This behavior made no sense, because the intention of the 
capacitor was to remove noise from the compensation signal.

Finally, Alice joined the discussion with an explanation.  She 
explained that the engineers from the European design center 
had been rightly concerned with possible noise at that input. 
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However, their solution turned out to be the problem.  The 
added capacitor had one end tied to ground, but that ground 
point on the PCB was about a half-inch (12mm) from the ground 
connections of the SoC. 

When the system became more active during boot, the level of 
electrical noise in the PCB ground plane increased dramatically. 
The key, Alice explained, was that although the schematics 
showed various parts connected to ground, there was actually 
significant voltage variation between one ground point and 
another.

The ground connection could not be considered ideal in this case. 
There was enough resistance and inductance between the two 
nodes such that fast-switching currents in the ground could 
produce significant voltages across the two points shown in the 
schematic as sitting at the same voltage.

Under normal circumstances, there was some small capacitance 
to a local SoC ground inside the A/D circuit. This was enough 
in combination with the precision external resistor to form a 
tiny RC filter that could remove noise from the input signal. 
But when an external capacitor to ground was added, it was 
acting as a direct path for high-frequency noise from ground at 
one point on the PCB into the A/D input. That added capacitor 
was much larger than the input capacitance of the A/D, meaning 
the input RC filter was swamped by the direct noise injection 
through the much larger added capacitor.  In effect, the added 
capacitor was bypassing the input resistor and allowing the full 
ground voltage variation to hit the A/D input. The capacitor was 
doing the exact opposite of its intended function.

Remember the various design weaknesses mentioned before? 
Each of these contributed a small amount to an offset from 
the proper controller correction value. The biggest offset came 
from the noise.  Removing these problems and removing the 
extra capacitor turned the design from unreliable into a stable 
platform, which was then manufactured and shipped with 
quantities approaching a million units.
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There is no hero to this story, but there was a villain. Misguided 
Corp certainly shot themselves in the foot by accelerating their 
restructuring without regard for the consequences. Each design 
center contributed greatly to the solution of the problem. (And 
of course, in some ways, each had contributed to the problem 
in the design.) Alice finally provided an explanation (a theory) 
of the failure based on the debug work from all locations. No 
subsequent testing could invalidate her theory, so it became 
accepted as the explanation of the root cause.

A custom software tool was critical to the final understanding. 
Many standard hardware and software tools were also used 
to collect statistical failure data. Finally, clear communication 
between the design teams was also essential as debug progressed 
around the clock at locations around the world.

Now I will turn to a little-debug story where there is no global 
consequence, no large team, and no big communication challenge. 
One individual keeps fixing the same problem multiple times—
until one day he stops to ask why the problem keeps coming 
back.

Little Debug: The Never-Ending Hole
8 Once upon a time, Bill and Sarah were very happy with 
the new house they had purchased in the suburban community 
of Marshmallow, Indiana. They had arranged with a builder to 
construct it to their specifications.  Every day after work, Bill 
came to inspect the site, noting in a little journal the progress 
made that day. Their excitement was nearly unbounded when 
they moved into their new home.

After a few months, they had a nice lawn growing in the front 
yard and backyard.  The next spring was when the trouble 
began. Bill noticed a small depression in the ground near the 
house when he was cutting the lawn in the backyard. In another 
part of the backyard, there was a small pile of pea gravel left by 
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the construction crew, so Bill took a shovel-full and filled in the 
small hole.

Because Bill had seen how the house was made, he knew that the 
construction team had first dug away a big hole for the basement 
and the foundation walls. Then, after the basement walls were 
poured, and the concrete forms had been removed, the piles of 
dirt were backfilled. So it made sense in Bill’s mind that maybe 
the backfill had been a little too loose. Maybe the ground was 
simply compacting over time. That just had to be the problem.

Then, a few weeks later, there was the hole again. It was odd, 
because Bill could not see much of the fill material in the hole. 
He had expected it to simply be lower down as the ground below 
it collapsed. He looked carefully around the hole, thinking that 
maybe the problem was that the fill material was washing down 
the yard during rain storms.  But he could not find a trail of 
material leading away from the hole, so that could not be the 
problem.

Then he thought, maybe the fill material was washing down into 
an underground trench. It could be following a trench line that 
was dug out for the electrical power leading to the house. Indeed, 
Bill could see a place where the power line trench had collapsed 
a little, further back in the yard.

The cycle of fill and disappear continued over the next months, 
and even into the next year. The power-line trench did not show 
further collapse, yet the hole continued to appear and grow, no 
matter how much dirt, sand, or pea gravel Bill put into that 
space. He was beginning to think it was haunted.

Then Bill decided that something else must be at work here. On 
a hot Saturday morning during late summer, he decided he had 
had enough. He was going to uncover and fix this problem, once 
and for all.

The first thing Bill did was to sit down in the backyard and stare 
at the freshly opened hole. “Where in the heck is the dirt going?” 
he asked himself. He studied the hole in the ground, but gained 
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no new understanding.

Bill stared at everything nearby and inventoried what he saw. 
Virtually every utility other than cold water entered the house 
near this spot at the back of the building. The cold-water entrance 
was at the front of the house, so Bill knew he could pretty much 
ignore that one. Here is what he saw:

●● A power meter attached to the house, with a fat 
gray plastic pipe going down into the ground.

●● A white PVC pipe, about five centimeters in 
diameter, coming out from the house, running down 
about 30 centimeters before going into the ground.

●● A water spigot to connect a hose to the house 
water system; used to water the grass or trees. 
(This was a few feet from the hole.)

●● An air conditioner outdoor unit with an electrical 
connection and coolant connections in and out of the wall.

●● A telephone company service box with 
wires going into the wall and a 2.5-centimeter 
PVC pipe going down into the ground.

●● A natural gas meter with a pipe going into the 
house and one pipe going down into the ground.

The second item started to nag at Bill. He knew the function and 
general operation for all of the other items, but he was not sure 
about this one. He went down into the basement of the house 
and quickly realized the purpose of that pipe. It was the exit pipe 
of the basement sump-pump system.

A sump pump works something like this: Large (about 10 
centimeters in diameter) PVC water pipes (some perforated and 
some solid) are buried under and around the foundation of the 
basement. One pipe comes down from the ground at the bottom 
of a window well. One buried pipe delivers condensation water 
from the in-house air conditioning/furnace unit.  All the pipes 
end at a large-diameter sump, which is really just a cylindrical 
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opening in the basement floor and the ground beneath that floor. 
That large opening is about 50 centimeters across and maybe 
one meter deep.  Water accumulates in the sump, especially 
during rainy periods. The water is eventually pumped up the 
five-centimeter PVC pipe to get it away from the house. A few 
times in the past, Bill had heard the sump pump operating after 
a storm, but not very loudly and only for a short time.

Bill was pretty sure that the sump-pump exit pipe crossed the 
yard somewhere and eventually reached all the way to the city 
storm-sewer system at the back edge of the yard. Could it be the 
cause of the mysterious hole? He decided it was time to do an 
experiment. If the sump pump was causing the mysterious hole, 
perhaps Bill could get the pump to run while he was watching. 
If water from the sump was carrying the dirt and pebbles away, 
Bill should be able to see some evidence of that, even if it was 
very weak.

The first step for the experiment was to dig down into the hole, 
even deeper. Using a small hand tool, Bill slowly removed dirt 
and rocks until he uncovered a thick plastic rope about one-
half meter down from the top of the ground. “Uh-oh, that is the 
buried main power cable into the house!” thought Bill. It was a 
good thing he did not dig down there with a sharp shovel, or he 
might have poked through the insulation and killed himself with 
electric current! It was a hot summer day, and his hands were 
sweating. A wet shovel handle was probably conductive enough 
to do a lot of damage.

Bill continued to dig, but very carefully, to avoid the power line. 
He switched to a small one-hand spoon-like tool to allow him to 
go around the power line with less risk of cutting into it.

The next step of the experiment was to put some water into the 
sump and see if any effect—even if only a tiny one—could be 
observed in or near the hole in the yard. Carrying buckets of 
water to the sump was very time-consuming, however. And if 
the pump started running right away, Bill might miss seeing the 
effect. So he hit on the idea of running water from a hose down 
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into the pipe from the window well. That water would eventually 
reach the sump and should fill the sump until the sump pump 
started running.

He set up Sarah in the basement to watch the sump and listen 
for the sump pump to start running.  “IS IT FILLING?” Bill 
shouted, so that Sarah could hear him from inside the house.

“YES!” Sarah replied.  It had taken some minutes, but water 
from the hose was reaching the sump through the window-well 
drain pipe.

“IS IT RUNNING YET?” Bill asked after a while. 

“Ngfthmt,” was the barely audible reply. 

“WHAT?” he yelled back.

“NO, NOT YET,” she shouted.

This went on for a good 10 minutes, back and forth. Surely, the 
water level must be high enough to trigger the sump pump! But 
nothing happened, and each response was negative.

Nonetheless, Bill was excited. His theory was starting to put 
together some clues. The hole had always seemed to show up 
after a rainstorm.  But then, rainstorms were frequent here, 
and correlation is not causation. Bill had checked to see if he 
could find some kind of trail or fantail of dirt leading away from 
the hole after a rain, but he had never found so much as a few 
pebbles or a smear of dirt.

Bill got down on his hands and knees and put his face down at 
the hole. He was wondering if the pump could be running very 
quietly. Maybe they just could not hear it over the continuous 
trickle of water into the sump.

Then Bill heard a muted click and a mechanical whine in the 
distance. A rumble was almost instantly followed by a roaring 
whooshing sound.  But Bill was a little too preoccupied to 
congratulate himself on having finally triggered the sump 
pump. There was indeed an observable effect in the hole; this 
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effect could best be described as a three-to-four meter high spray 
of water, dirt, pebbles, water, and more water. Bill managed to 
react quickly enough that the volcano erupted only partially 
into his face, but a significant portion that made it to maximum 
height then came showering down all over the rest of Bill and a 
good portion of the entire backyard.

“IT’S RUNNING,” came Sarah’s voice from the basement.

After about 30 seconds, the geyser subsided.  Our debug hero 
stopped cursing and laughing a minute or two later. He finally 
had a clue as to where the dirt was going. It was clear to him that 
the sump pump could deliver enough force to spray a significant 
amount of material several meters high and spread across the 
yard. It was no wonder that he could never find evidence of the 
missing material.  It was distributed across an absurdly large 
area of the yard.

After drying off, Bill dug down a little further.  He finally 
uncovered some white plastic PVC pipe that was clearly 
connected to the vertical sump-pump section he could see above 
ground. As he cleared more dirt, he could finally see a clearer 
picture of the root cause of the problem. The PVC pipe came out 
of the wall and descended to a point deep in the ground—far 
deeper than the power-line burial. At that point, it made a right-
angle turn and then ran horizontally across the yard. But the 
right-angle joint was made by a PVC fitting, and that fitting was 
neatly fractured at a 45-degree angle.

At some point following construction, the fitting had simply 
broken. It might have been caused by ground settlement. Or it 
might have been caused by water in the pipe freezing during an 
especially cold winter. This last thought seemed unlikely. In this 
part of the country, the ground would not get below the freezing 
point of water at such a depth below the surface.

In any case, the news was about to get much worse. Bill was 
struggling to understand why so much water came out of the 
break at the joint. Why didn’t more of the water simply flow 
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through the pipe? He got out a plumber’s snake (a tight coil of 
steel, used to clear clogs in sewers) and began probing the pipe 
leading away from the broken joint.  The snake could not be 
pushed in more than about one meter before it hit an obstruction.

Pulling the snake back yielded a small pile of mud and pea fill. 
Oh no. Bill suddenly knew where a lot of the material he had 
been shoveling into that hole for a year had ended up: inside the 
PVC pipe. When the water flow diminished, some material would 
always fall into the gap of the broken joint. Each subsequent 
burst of water from the sump pump packed more and more dirt 
and rock into the drain pipe.

Bill started digging a second hole at the distance from his hole 
to where the snake stopped. When he reached the PVC pipe, he 
could tell that it was packed with material simply by tapping 
on the pipe and listening to the sound. So he dug some more 
along the length of the pipe, turning the second hole into a long 
trench. After about two meters, tapping the pipe again produced 
a hollow echoing sound.

Bill cut the PVC pipe in two places: first where he thought the 
clog started and then where it sounded like the clog ended. His 
guesswork was reasonable. The remaining pipe was mostly clear 
of debris, except for the long clogged section of pipe he removed. 
That long section was completely packed with mud and pea 
gravel.  A quick trip to the local hardware store procured a 
replacement section of pipe and some joining fittings, plus PVC 
glue and pipe-preparation solvent.

He replaced the broken right-angle joint and installed a flexible 
fitting in the vertical run.  The intention was to allow some 
further settling without fracturing the pipes or right-angle 
fittings again.

Over the following years, the hole did not come back. But Bill 
often smiled a little any time it rained.
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Challenge Questions:

1.	 How did other people solve problems similar to this 
problem in the past? 

2.	 Good writers of design are good readers of other people’s 
designs. Are you a good reader?

3.	 Could it ever have worked that way?

4.	 Does it work that way now?

5.	 Are you suffering from optimism bias?

6.	 How complete are your checklists?

7.	 Are you doing big debug or little debug?



.
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A Great Idea does not have to work, To be 
a Great Idea

Long ago and far away, I worked at a broadcast center that used 
its TV character generator system to store various messages 
for over-the-air display. This was long before computers were 
available on every desktop.  This character generator allowed 
the storage of hundreds of unique messages, which made it 
relatively advanced for that point in time. Like I said, it was a 
long time ago.

The character generator had become something of a bulletin 
board for the operators. They used it to store various sayings 
and messages that had struck them as funny, unusual, or 
meaningful.  In some ways, it was a 1970s version of Twitter. 
What could a person say that was clever or funny, but still fit 
completely onto one standard-definition TV screen?

One particular quote was attributed to a senior engineer in the 
facility: “A great idea does not have to work to be a great idea.” 
Over the years, that statement has always struck me as funny—
but I also began to see some wisdom beyond the irony of such a 
contradictory expression.

At times, people become locked into a single idea. They cannot 
see any other explanation for a problem or any other solution for 
it. In short, they become obsessed with their “great idea.” Even 
when all of the evidence is screaming at them, telling them that 
the great idea is wrong, that it does not work, they cannot let it 
go. It just seemed to fit so well when they started!

Great ideas can become like religions, where belief outweighs 
all other considerations. Heretics and their comments are not 
welcome.

There exists a relatively well-known problem-solving method 
that uses a so-called fishbone diagram.  The method assumes 
you already know all of the possible causes of a problem when 
you start. You are supposed to categorize these causes and line 
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them up into nice, neat diagrams. You then design (the fewest 
possible) experiments; these lead you directly to the correct 
answer. It’s neat, sweet, and so complete.

My experience tells me that the real root causes and solutions 
to a complex technical problem are often unknown to the team 
when they start troubleshooting (but this should not be true 
when they finish the investigation). This is why I am so emphatic 
that brainstorming efforts early in the debug process should not 
talk so much about “why.” Sure, if you want to list some of the 
potential causes, that is fine—but don’t focus on proving those 
before you have thoroughly documented all of the other who, 
what, when, where, and how facts.

In some ways, I think the possible cause list should be the 
least organized, most messy, and most casual part of your 
communication. It is okay to make it difficult for people to lock 
in on this part. You want to make them focus on what is known 
instead of what might be true.

So here is the thing about getting a great idea: When you find out 
that your great idea is wrong, you must unwind the investigation 
and go back to the beginning of the debug process.

This often happens when you are at the very end of the process. 
You have gathered lots of evidence and you have come to a final 
experiment that was going to prove that you truly understand 
the problem.  You tried this and really expected to see that 
result—but something totally different happened.

If you are really clever, you might be able to walk backward 
through your logic and your previous deductions and actually 
see which fact has misled you. I have talked about this before. 
Sometimes, it is not what you don’t know; it’s what you “know” 
that just is not so! In other words, somewhere in your facts and 
your deductions from those facts there is some false item. This 
thing, this falsehood, is leading you down the wrong path.

Like in the scenario with that 24-year-old man in the bar, 
you started drawing conclusions that made no sense once you 
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knew the real facts. In fact, they led you to exactly the opposite 
conclusion about the situation.

Although intuition can lead you to a brilliant diagnosis, it can 
also lie to you. You were so sure that you saw some event, it 
colored every observation after that. But when you find out that 
this one observation was wrong, every subsequent conclusion 
becomes suspicious.

No matter how painful, the best thing to do in this case is to 
go back to the top of the debug process and ask again: What 
do you know? Walk through your documentation (you have 
been keeping good records, haven’t you?) and challenge every 
statement of fact you find there. If you say that a resistor is 100 
ohms, have you measured your sample? If you say that a sheet 
of plastic is 10 millimeters thick, do you have measurements to 
prove that?

Insight
Once you have really found the source of a problem, you will have 
some insight into the whole problem. I like this word, “insight.” 
It goes so well with the phrase “If I could see it, I could fix it.” 
Insight is how you “see” things in your brain.  You visualize 
causes and effects. You suddenly see how effects become causes 
in their own right, looping and connecting in multiple complex 
ways. Insight lets you connect facts that might otherwise seem 
unrelated. It is the glue that holds your story together. 

Proving your solution is good enough.
When you really understand the problem, when you finally have 
achieved that insight, you can usually design one experiment 
that proves the correctness of your understanding and often 
proves some validity of your solution.

Remember that any given problem might have an infinite 
number of solutions. Two 100-ohm resistors in series might work 
just as well as one 200-ohm resistor. Those two resistors might 
cost a little more than the one-resistor solution. But the single 
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resistor might fail an ESD test because a high voltage can jump 
across the lead space of that single resistor—but not across the 
lead spacing of two resistors.

Maybe you will need to devise more than one test to prove your 
solution. In some cases, you have to run a product through an 
entire suite of tests. It can be very frustrating to discover that 
your solution fixes every aspect of the original problem, but that 
your new design has exposed a previously hidden problem.

That is the life of the engineer. Like peeling the layers of an onion, 
you will shed a few tears and then keep going.  Many engineers 
are familiar with this analogy of problems being like the layers 
of an onion. This is a good time to discuss the possibility that any 
debug effort might be chasing multiple problems at the same 
time.

Sometimes, you will encounter a situation where multiple 
problems are creating the symptoms you have observed. It will 
not be sufficient to fix only one of the problems. You must keep 
debugging until you have fixed all of the problems.

Occasionally, you will also encounter a situation where two 
(or more) problems have no relationship to each other.  You 
just happened to find one problem while looking for a different 
problem. It is important to keep track of the unexpected problem. 
You will need to fix it eventually, so maybe you should go ahead 
and fix it immediately. No matter what, make sure you record 
the existence of that second bug.

Failing Gracefully
Sometimes there are good reasons that you will not solve a 
particular problem. If your boss comes in on Friday and demands 
a “small change” that requires a million lines of new code, you 
won’t have it ready on Monday.  You cannot deliver $50,000 
worth of hard-steel tooling for $50, no matter how smart you are.

There will be times that the correct solution is simply beyond 
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the capability of today’s technology. What we fit into a handheld 
package today previously required a room full of six-feet-tall 
racks. Understanding the nature of the problem does not mean 
that you can always fix that problem today.

As discussed, there are constraints of people, time, money, and 
results. You might find that your problem is not worth solving 
given those constraints.  For example, it would not be worth 
putting $5,000 of repair parts into an old printer that can be 
replaced today for $500.  Even though your problem-solving 
skills might be beautifully demonstrated by doing this repair, it 
just is not worth the time and expense to do so.

You should not be angry with management for telling you to 
stop.  These emotions are natural, but you will gain more by 
keeping good records of your debug and understanding why the 
constraints kept you from winning this battle. Remember, the 
problem-solving war always continues.

Once in a while, you might find that you have a different kind of 
constraint keeping you from solving a problem. It might be that 
you do not have the physical or hand skills to do something. For 
example, I could practice all day, but I will never have the hand 
skills to draw like Leonardo Da Vinci. My soldering skills are not 
terrible, but clearly not as good as some other folks’, who have 
trained and practiced that art. These are limitations that I must 
understand and accept.

If the economic or time constraints do not prohibit it, I might be 
able to hire somebody to do an artistic drawing for me. I might 
be able to purchase a drawing or make a suitable photograph 
instead. But if the only solution is to have the hand skills, I am 
out of luck.

When an investigation is terminated due to constraints 
or by management decision, don’t throw away all of your 
documentation. You might encounter a similar problem later. I 
have been in situations where management issued a stop order 
and later changed their minds. The problem solving had to start 
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up again—quickly. You might even need that documentation to 
show your manager (or his replacement) that you made an honest 
and appropriate effort—that stopping was not your choice.

Okay, some of that sounds like political advice and CYA* 
stuff, but there are clearly plenty of good reasons to 
generate good records during a debug—and to keep them 
long after the problem solving is complete, whether by 
success or by failure. 

*CYA is an acronym for Cover Your Ass.  It means taking an 
action that is intended to protect you in the future from some 
possible negative outcome.

A Great Idea Doesn’t Have to Work, to Be a 
Great Idea

1.	 Be careful of Grand Plans and Grand Ideas—it is too easy 
to fall in love with a solution that you later find does not 
or cannot work.

2.	 Watch out for multi-layer, or multiple-cause problems.

3.	 Understand your limitations.

4.	 Good documentation helps you succeed and protects you 
in failure.
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Study Your Mistakes

So here is a somewhat painful piece of advice: Study your 
mistakes—even more than your successes.  It turns out this is 
really easy to say, and really, really difficult to do.

There is something in the human condition that makes us want 
to forget our mistakes—to erase the bad stuff and remember 
only the good stuff. So this advice comes with some modification: 
Study your mistakes, but only until you have learned the lesson 
well enough to not repeat that mistake. Once you have figured 
out the mistake, put it into your checklists, make sure you 
understand it, and then stop worrying about it.

In addition to my regular work, I also do some part-time photo-
journalism.  I often find myself failing to get a shot or getting 
a technically awful shot at a critical moment—or sometimes 
shooting better photographs, but at unimportant moments. I was 
determined to do better, but the question remained: How could 
I improve? The camera would still be the same, but somehow I 
needed to adjust the nut behind the viewfinder.

Digital photography gives you the opportunity to sneak a quick 
look at your images (on the back-of-camera display) just after 
taking them.  Sports photographers call this chimping.  It got 
that name because someone observed that people looked and 
sounded a bit like a chimpanzee when a great photo showed up  
on the camera-back display as they were reviewing them: “Ooh, 
ooh, ooh, ooh!”

There is a great temptation to immediately delete the photos 
that are obviously bad: poorly exposed, out of focus, blurred 
due to camera shake, wrong color-balance settings, etc.  Any 
photographer can instantly tell that those shots will never get 
printed in a newspaper or magazine or even used in a Web 
collection. Nonetheless, I realized early on that keeping these 
shots was more valuable than the cost of computer storage they 
required.

My method is to sort the bad shots quickly into a folder called 
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“Bad” and mark or segregate the better shots so that I can later 
annotate and process them (e.g., crop them, adjust the contrast, 
add sharpening) for final use. After the time pressure (deadline) 
to deliver a few good shots with captions has passed, there is 
plenty of time to go back and study the bad shots.

Modern digital cameras include EXIF (exposure information) 
metadata to help people understand what the camera thought 
it was doing when it took the photo.  Many cameras include 
extensive information about the focus point and focus mode 
used, in addition to the normal ISO sensitivity, shutter speed, 
and aperture values.  In a very real sense, the EXIF data acts 
like a flight data recorder for photographers. It tells them exactly 
what the settings were at the moment the exposure happened.

By studying the EXIF file and the resulting image, I have found 
that most of the time, I can identify a basic mistake I made in 
the setup or handling of the camera. In some cases, it becomes 
obvious that the automatic functions of the camera were 
deceived by the conditions.  Maybe an unimportant but very 
bright object unexpectedly entered the scene, which caused the 
camera to underexpose the total image. Most of the time though, 
the problem is that I simply did not think about all of the aspects 
that would affect the image capture. In other words, I made a 
mistake. Or several mistakes.

As discussed, checklists can be tremendously helpful for 
situations like this. I typically keep a small, laminated 10-point 
checklist for camera setup when shooting.

Many companies include formal process steps to try to study 
their mistakes.  They might call these reviews something like 
“lessons learned.” In theory these should guide a development 
team to avoid repeating the same mistakes. Unfortunately, far 
too many companies immediately file such reports away and 
never look at them again. But in truth, the “lessons learned” 
review of previous projects should be the first thing you look at 
when starting a new project. Make sure the mistakes you made 
previously, don’t bite you again on your new project.
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If only it were so simple, eh? Unfortunately, the worst projects 
are often followed by management reorganizations. Punish the 
innocent, promote the guilty, and all of that. There is a secondary 
effect here, too.  Your checklists can become overloaded with 
items. Sometimes you will look at a checklist that came from 
somewhere else and you will say, “I would never make such a 
stupid mistake; why do they ask me to verify that thing?”

Likewise, somebody seeking to improve a checklist (hoping 
to eliminate all problems) might start asking insanely vague 
questions like, “Have you checked every conceivable factor?” If 
you answer yes, you are probably arrogant and overconfident. 
But if you answer no, you look lazy or careless. The question 
becomes a trap with no right answer.

The correct solution is that you must actually care about 
generating a good checklist. Make sure you cover the problems 
you have seen or created in the past. Make sure you have specific 
actions with understandable guidelines for your checklist items. 
Take the time to document what your checklist means and how 
you run specific tests. Write down when specific tests can be 
skipped. More than anything, have some peer reviews and be 
sure to treat your checklists as living documents that can be 
either expanded or trimmed when appropriate.

If you are a manager, make sure that you do open and honest 
“lessons learned” reviews about management culpability for 
project mistakes. For example: 

●● Did you take six weeks to choose a key component vendor 
and then tell the engineering team that they were late—
before they even started?

●● Did your management team cripple the development with 
absurd constraints?

●● Did management set a schedule that the team said could 
never be met—but management had already sold the 
customer on such a ridiculous delivery?

●● Did you price the product without even asking engineering 
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for an estimate? And then did you insist that engineering 
give you a solid-gold product for the price of dirt and rocks?

There is a bigger lesson here than just abusing people for their 
mistakes. The goal is to find methods (I mean good ways that 
work, not stupid things that nobody could possibly do) to prevent 
such errors in the future.

Study Other People’s Mistakes
“You are idiots to believe that you can learn something from your 
experience, I prefer to learn from the mistakes of others to avoid 
my own mistakes.”  Otto von Bismarck (1815-1898,) Prussian 
Chancellor.  [Various Internet sources, none I have found with 
absolute traceability.]

Good old Otto, who could not have been tagged as a comedian 
for sayings such as this one, must be acknowledged as having 
made a decent point: it is certainly less painful to learn from the 
mistakes of other people.

Therefore, in addition to recommending that you study your 
own mistakes it is certainly appropriate here to recommend 
that you study other people’s mistakes. That is not always so 
easy to do. Autobiographies and biographies often wish to extoll 
the achievements and excellence of their subjects. Avoiding or 
minimizing painful failure is understandable and forgivable.

Nonetheless, there exist collections of stories and reports of 
famous engineering or design failures.

There are some excellent examples of open discussion of errors 
for you to study.  One is the medical field, in which M&M 
(morbidity and mortality) conferences are used to openly discuss 
mistakes. Punishment is not part of this process, but prevention 
of future mistakes is a primary goal.  Likewise, the Food and 
Drug Administration encourages reporting of adverse medical 
outcomes that might (or might-not) lead to action against a 
given provider.  The primary intention is to get the information 
out into the open.
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A similar example comes from the field of aviation, specifically 
air-crash investigations.  I have always been fascinated by 
reading about the process by which investigators uncovered the 
chain of events that led to an air disaster. These parables inform 
us, humble us, and ultimately can make us smarter designers.

Some of the investigations read like mystery tales. Subtle clues 
are collected and initial theories are painstakingly disproven 
until a final set of conclusions can be reached.  Indeed, a few 
crash investigations have been made into great novels.

In any case, it is certainly good practice to read about other folks 
designs and debug methods.  If the failures of others lead you 
to avoid even one mistake, the effort to read about them was 
worthwhile.

You don’t want to be an engineer who buries his mistakes.

Problems Created During Debug
There is another kind of problem to remember and study. Once 
in a while, when you are trying to diagnose a problem, you 
will accidentally create a new problem. Maybe you strip a bolt 
while trying to remove it. Maybe you accidentally leave a little 
extra solder on a printed circuit board and create a short-circuit 
between two points.

This goes straight to the heart of my previous discussion about 
sometimes having two problems that are contributing symptoms. 
In this case, you have now added a whole new problem on top 
of the problem you were originally trying to solve. Remember to 
watch for changes in the problem symptoms. Of course, many 
times you will be completely aware that you just created a new 
problem.



An Engineer’s Guide to Solving Problems

206

Study Your Mistakes

1.	 Study your mistakes, since they will teach you more than 
your successes.

2.	 Once you have learned the lessons, put them into your 
checklists and then stop obsessing about them.

3.	 Management has an obligation to be honest about their 
contributions to problems.

4.	 Openly discuss mistakes without retribution.

5.	 Study the mistakes of others too.

6.	 Sometimes during debug, you will create new problems.
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Business (and the Business of Solving 
Problems)

Many years ago, my friend Hugh Macdonald-Smith told me that 
the reward for solving a customer’s problem was the opportunity 
to solve that customer’s next problem. At the time, this statement 
did not seem so profound. As I thought about it over the next few 
years, however, it started to make more and more sense to me.

Another friend, Jon Fasig, once said to me, “If you find the source 
of a customer’s pain and then remove his pain, that customer will 
reward you handsomely.” I wondered a bit about that phrase, 
“reward you handsomely.” It is an idiom that generally means 
that someone will give you lots of money. But the meaning of the 
phrase can be taken in a more general context, too. Even if that 
customer is not throwing cash at you, he is probably continuing 
to do business with you. More importantly, if you remove one 
customer’s pain, there are probably many more like him. The 
reward is multiplied as you sell the same (or similar) solution to 
many customers.

Both of these comments go directly to the heart of the vendor-
customer relationship. Customers are looking for a product or 
service that improves their current situation. They want you to 
make their life better in some way.

Often, you solve problems with your own designs because you 
need to solve that problem to make your product better (cheaper, 
faster, smarter…better).  On the other hand, you might need 
to solve this problem just to get your product to be minimally 
acceptable.  And in some cases, you are asked to modify your 
product with the intention of solving a specific problem that the 
customer presents.

Although the motivation for each of these is slightly different, 
the ultimate need is still just to solve a problem. Therefore, the 
problem deserves your full attention and best solving methods, 
no matter the reason you started down the debug path.
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Many years after first hearing them, I condensed these wise 
words from my friends: The reward for solving problems is 
the chance to solve more problems.  These new problems will 
probably be bigger and more complex.

There is an implied ceiling here: the Peter Principle. This comes 
from a book by the same name published in 1969, which stated 
that people rise to the level of their incompetence.  Looking 
through the lens of solving problems, it predicts that we rise in 
an organization to the level at which we are no longer able to 
efficiently solve problems.

Problem solvers need care and feeding. Just as sales people need 
recharging due to rejection, problem solvers need recharging due 
to frustration.  Engineers are trained to solve well-structured 
problems, but are not so comfortable with ill-structured problems. 
When confronted with a seemingly endless series of problems, it 
is natural for a human being to become fatigued. Yet engineers 
often persist and find great joy in that “Yes!” moment when a 
solution becomes evident and that “Yes, Yes!” process when the 
solution is validated.

The storm cloud on this landscape comes from that layer of 
additional requirements discussed before, called constraints. 
Perhaps the technical solutions are clear, but out of reach of the 
economic structure of the project.

“Rats!” I shout at the emptiness.

Perhaps the time frame allowed is simply not sufficient to create 
a new or altered design.

“Scoundrels!” I cry.

The worst problems an organization faces are those that are self-
inflicted. The list is endless, but you can probably think of a few 
from your own experience. 
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Perhaps management demanded the organization switch tools in 
the middle of development—new computer aided design (CAD), 
timekeeping, email, or status-reporting mechanisms, to name 
just a few that I have encountered.

Some organizations will introduce several new systems 
simultaneously in an effort to “optimize” an organization that was 
previously functioning quite well. Managers are re-assigned and 
groups are realigned.  Predictably, chaos ensues; management 
then demands a new round of new systems to recover to previous 
levels of operational performance.

“Clowns!” I lament.

Problem solvers wear down. They need to be carefully cultivated. 
You must feed and water them and treat them with kindness, or 
they will run (not walk) to your competitors. Some will retreat 
like turtles into their protective shell.  A few might actively 
scheme to hurt your organization.

Organizations and managers must recognize when the biggest 
problems facing the problem solver have been inflicted from 
above.  Some managers behave like passengers in the back of 
a vehicle: napping until an obstacle is encountered and then 
bellowing forth instructions and guidance from their vast 
intellect and experience to tell the idiot employees how to clear 
the road. Better managers scout the path ahead for obstacles 
and do as much of the heavy lifting as they are able, clearing the 
path and marking the craters to help keep the vehicle moving.

A recurring theme in many quality-improvement programs is to 
recognize that every problem is an opportunity for improvement. 
What ways could you put that opportunity to work?

You could make that product better before you even begin the 
design—at the product-definition stage.  You could make that 
product better at the design stage.  Or you might make your 
process for building that product better. The important part is 
to see every problem-solving process as an opportunity—not as 
a setback.
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Aptitude and Attitude
Ultimately, your ability to solve a problem, despite the support 
or interference of your organization, will come down to two of 
your strengths or weaknesses:

●● Your aptitude: Aptitude refers to your skills and 
craftsmanship. Your preparation to win will help (or hurt) 
you now that game day has arrived, with your practice, 
experience, and talent either being ready or lacking. Your 
ability to organize the problem-solving effort is part of 
aptitude, as is your ability to clearly communicate the 
problem solving.

●● Your attitude: This is all about your mental status. Will 
you show persistence or give up quickly? Are you tireless in 
attacking the problem or are you exhausted after the first 
hours?

Often, the only factor that you are fully in control of will be your 
attitude.  You will need to find some tricks to keep a positive 
attitude. These might include the following:

●● Having a mentor or buddy who can build you up
●● Setting personal goals and a reward structure
●● Setting realistic schedules and achieving them

Working in Organizations Large and Small
There are some differences between working in larger 
organizations and smaller ones.  All organizations, even tiny 
one-person companies, require some amount of communication 
and cooperation.  If nothing else, there is always the need for 
clear communication and cooperation with your customer and 
vendors.

Larger organizations add layers of management and often 
demand more formal reporting of periodic status. In these larger 
structures, more emphasis is put on command and control in 
addition to communication and cooperation.
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In larger organizations, the people at the top may become more 
isolated from the day-to-day activity and often feel too distant 
from critical operations.  They might become more dictatorial, 
demanding that their whims and orders be followed precisely, 
regardless of whether they make any sense at the front lines. 
Any further problems exacerbate this feeling of helplessness at 
the top and can lead to micro-management of all activities.

Small businesses sometimes add a layer of family conflict as 
a constraint against problem solving.  If Fred cannot tolerate 
talking to his wife Ethyl, who shares all of her complaints with 
her friend Lucy, who demands that her husband, Ricky, fire 
Fred, who Ricky needs as his technical expert—well, you have 
some big problems.

No management system can overcome personal problems in the 
interaction of family members. They can leave work at the end of 
each day, but they don’t leave the family at the same time. This 
can make communication more difficult in a smaller company, 
even though logic would tell you that the smaller organization 
should allow easier, faster, and simpler communication.

Bigger organizations often take on bigger tasks.  They will 
need more effective communication systems to get these tasks 
completed.  Think of it this way: If I hand you a single brick 
and ask you to put it on top of a nearby hill, you can probably 
complete that task in a few minutes. In fact, you will probably 
do an excellent job.  But if I ask you to move an entire brick 
house to the top of a distant mountain, you face a much bigger, 
more difficult task. You could take one brick at a time across the 
distance, tearing down and rebuilding the house with thousands 
of trips between the two locations. The transit time is multiplied, 
and there might be pieces you cannot carry by yourself.

Imagine for a moment that the bigger organization knows nothing 
about special tools, but they have lots of people available to help. 
They position thousands of employees around this building and 
instruct everybody to carefully lift their small section on the 
count of three. Let’s assume that by some miracle, this works; 
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the building is lifted up in air. 

Now, the boss tells them, “When I count to three, everybody 
must take one step to the left.” He shouts “One! Two! Three!” 
Inevitably, the house will spin to the ground, because the people 
on each side went to their left, which was to the right of the 
people on the opposite side of the house. The building is ripped 
from everybody’s grip.  Clearly, precision in communications, 
coordination, and cooperation would be really, really important 
in this operation.

Big companies are like that. Everything has to be clear, precise, 
and well-planned if the project is going to get anywhere.

Don’t confuse being the best-managed company with being the 
most-managed company. Best-managed companies know how to 
trust their people and run operations with a confident and light 
touch.  Best-managed companies put a lot of time into hiring 
the best employees. Once they have those employees, the best-
managed companies put some effort into keeping those workers 
happy.  Most of all, they empower those employees to take 
positive actions that work for the benefit of the company—and 
for the benefit of the employee.

Most-managed companies try to control everything from the top. 
They disempower employees and try to substitute an unyielding 
rulebook in place of trusting employees to think.  They see 
employees as easily-replaced interchangeable components.

I want to close this chapter with one of my favorite George Rostky 
editorials from Electronic Design, first published December 6, 
1977 and reproduced on the next page.4



Business

213

The Shell Race
Charlie knew his company had severe morale problems. They 
affected everything. The reject rate on the factory floor seemed 
to get worse every week. His people in the field couldn’t sell. 
And his engineers had lost their flair. Even the newer engineers 
had lost the spark and enthusiasm they had brought with them 
when they joined the company.

Everybody wants to work for a winning company but, it seems, 
everybody felt that Charlie’s company was a loser. So there was 
a general malaise.

Charlie recognized the importance of morale, so he worried about 
it a lot. What to do? Finally, he got the brainstorm: competitive 
sports.  He would organize some sports competition against 
representatives of all the other companies in the area.

Everybody loved the idea. The sport they chose, since they lived 
in a riverside community, was shell racing—a fine competitive 
sport requiring skill and teamwork.  Teamwork! That’s what 
builds morale.

The big day came and the river bank was mobbed. Thousands 
upon thousands of sons and daughters, uncles and aunts, 
sisters and brothers, wives and mistresses crowded the shores, 
screaming encouragement to their favorites.

When the first boat came to the finish line, alas, it wasn’t 
Charlie’s. Nor was the second or third boat, which came close 
behind.  In fact, long after all the other boats had crossed the 
finish line, Charlie’s still was not to be seen. When it finally 
appeared it was zigging and zagging toward the finish line. As 
the shell came closer, Charlie could see activity on the shell more 
clearly. Eight executives were shouting orders to one man with 
an oar.

Charlie fired the oarsman.

4Electronic Design, page 53, December 6, 1977.  Reprinted by 
permission of Electronic Design magazine, all rights reserved to  
Penton Publishing.
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Business (and the Business of Solving Problems)

1.	 The reward for solving problems is the opportunity to solve 
more problems.  These new problems will be increasingly 
difficult. Don’t panic. Your skills should also be increasing.

2.	 The best organizations understand how to enhance your 
ability to solve problems. They actively remove roadblocks 
and help you when and where they are able.

3.	 Some organizations decide you need more managers.
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Customers and Customer Service

Many years ago, an electronics magazine ran a very short piece 
about the question “What do you need to start a business?” They 
cited many common answers from engineers, business types, 
and financial experts. It is a great exercise, and I encourage you 
to jot down a couple of quick answers yourself before moving 
down this page.

Technical-type folks will often answer that the key to starting 
a new business is to have the right idea. Technical-type folks 
with a little more experience will modify this answer to be, “You 
must have the right product”—meaning that you have to have 
taken that great idea further and turned it into something more 
complete.

Business-type folks will typically tell you that having the right 
management or sales team is the real key to starting a new 
business.

Financial-type folks might emphasize having adequate 
financing, accurate cash-flow projections, and good financial 
controls, because nothing kills a business like running out of 
money at some critical time.

Oddly, this article said, entrepreneurs all gave the same answer 
when asked “What do you need to start a business?”

What was their answer? It was simply: “Customers.”

I have repeated this story to as many young engineers and 
hopeful business owners as I could over the years. What I’ve 
realized, however, is that the article was incomplete. There is 
an additional piece of wisdom that we can add here: What is the 
definition of a customer?

A customer is a person or organization that is ready, willing, 
and able to purchase a good or service from your company for 
(enough) money to sustain your business.
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Although that looks simple on the surface, the “ready,” “willing,” 
and “able” components make it far more challenging than you 
might think:

●● Ready: One of the first things a good salesperson finds 
out is where the person or business sits in the process 
of moving from “thinking about it” to “ready to make a 
purchase.” The effort to close a deal is wasted too early in 
the process but is essential to getting a sale at the end of 
the process. The trick is in knowing where you are along 
that timeline.

●● Willing: The person must want to part with his own 
retained earnings (cash) in exchange for something you are 
offering. I hated to pay so much money for shingles to cover 
the roof of my house, but it was better than letting the rain 
come in and ruin everything inside. You can be willing, 
even if it is an unhappy desire.

●● Able: The person must have the resources to pay you 
for your good or service. If he cannot pay you until next 
Tuesday, he is not able (and not ready). If purchasing your 
product means he will not eat for the next month, he is not 
really able. Social responsibility says that you must not 
move forward with such a transaction.

Here is another way to look at ready, willing, and able: They are 
closely related to the three features of all projects—time, money, 
and results.

●● Ready = timing or time: You probably will not get a sale 
when it is too early and you will never get a sale when it is 
too late.

●● Willing = results: The customer is looking for some 
specific result. Can your good or service deliver that result?

●● Able = money: No matter how much the customer wants 
what you have, if he is not able to pay you (enough) money, 
there is no viable business here.

That is the second time I have mentioned the word “enough” 
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with respect to money.  Let’s be very clear here: You can sell 
personal computers or cell phones for $1, but you will quickly go 
broke if those items cost you $500 to build or buy. You are giving 
away $499 with every sale. The customer-to-vendor relationship 
is false in this case.

The return on every sale must add up to enough money to keep 
you in business. You have to pay your rent, your utilities, your 
taxes, and for the cost of your materials. You also have to pay 
your employees.

All of this is paid from the difference between what your good 
or service cost you and the price at which you sell it. Your gross 
profit margin is not a dirty word.  It is how you keep going.  If 
you are consistently quoting work at a price below your cost, 
you do not have a business. Delaying the hard decisions will not 
make them any easier; in fact, it will make the final result more 
painful.

Investors versus Customers
Over the years, I have witnessed many smart business people 
fall into a trap when they became desperate to keep a struggling 
business alive: They turn all of their focus to finding investors.

Here is one of the most important things I can teach you: There 
is a giant difference between customers and investors. If you do 
most things right, a customer will not want his money back. In 
fact, the better you do things, the more likely that customer will 
be to come back to try to give you more of his money for more of 
your product or service.

In contrast, even if you do everything right, an investor wants 
all of his money back. And he also wants some of your money on 
top of that.

Is that clear enough?
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Customers, Prospects, and Suspects
I don’t know what it is, but some companies are utterly unable 
to distinguish between customers, prospects, and suspects. They 
expend insane resources chasing prospects and suspects, while 
paying customers are ignored or treated like dirt.

I have already clearly defined what makes a customer.  A 
customer is a person or organization that is ready, willing, and 
able to buy your good or service for (enough) money to sustain 
you.

A prospect is a person or organization that could become a 
customer at some time in the future. A prospect might not have 
enough money today, or might not be ready or willing (yet), but 
is somewhere on that continuum between “just thinking about 
it” and “ready to buy.” It is the job of marketing and sales to help 
the prospect move down that path.

A suspect is somebody who recently was or probably will be 
involved in a crime, very soon. It might be an offense against your 
company or, if you are lucky, something involving your biggest 
competitor.  At best, suspects consume ridiculous amounts of 
time and effort.  They never, ever return a dime.  They dither 
forever while demanding your full attention during the decision-
making process. A good salesperson can smell these guys a mile 
away. A desperate salesperson makes suspects into his full-time 
passion.

A good customer (or prospect) often knows your business better 
than you do, but respects your abilities and efforts.  Good 
customers realize they cannot do everything themselves and 
they like to purchase from somebody who is willing to make 
the commitment necessary to deliver the highest quality at an 
acceptable price.

You should treat customers best, prospects fairly, and suspects 
with appropriate caution.  For some reason, many companies 
cannot understand this relationship.
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8 Once upon a time, a man died suddenly and found 
himself at the entrance to heaven. He was greeted warmly and 
was given a tour of the place. There were choirs singing praises 
and people floating on clouds, all with a calm air of contentment.

The new arrival was surprised when he was asked if he would 
like to visit hell. “I always thought we were sent to one place or 
the other!” he exclaimed.

“No,” said his guide. “We show you both places and then you are 
allowed to choose your final location.”

When they got to hell, the man was surprised. It seemed that 
a damn fine party was perpetually in progress.  People were 
dancing, feasting, and drinking. Many beautiful women were 
scantily dressed and pressing close up to the men, who all 
appeared healthy and vigorous.

At the end of the visit, the man returned to heaven and was 
asked to choose.

“I don’t wish to appear ungrateful, but the other place seems 
so enticing and heaven seems, well, downright boring by 
comparison. I will take the other place.”

“As you wish,” replied his guide.

The man was escorted back down and placed in a room to sleep. 
When he woke up, he was thrown into a pit of unspeakable slime. 
Brimstone rained down upon him and fire belched forth from the 
walls. Demons tormented him with sharp spears and salt was 
poured upon the wounds. Thirst and hunger wracked him. The 
devil laughed endlessly.

“What is this?” the man cried in agony.  “Yesterday this was 
completely different! Why have you done this to me?”

The devil replied, “Yesterday, you were a prospect; today, you 
are a customer.”
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Is this how your company treats customers? If the answer is 
yes, you are not alone. You might be thinking that you have no 
impact on this process. You might feel that your little corner of 
the business could not change this. You would be wrong. Indeed, 
you might be surprised at how much you can help.

Do you remember the first steps discussed in solving 
problems? Clear communication is the key. The better you do 
at communicating technical issues clearly and without anger, 
the faster the customer will realize that you are trying to help. 
The same clear summaries will help other folks within your 
organization help you to find out the things you don’t know.

When you become aware of problems, use the skills and methods 
you have learned to put together clear descriptions.  You will 
need the customer to confirm or modify your understanding; you 
will need to reproduce the customer’s problem report; and you 
will need to come up with good solutions.

In some cases, you will not be able to discuss all of these solutions 
directly with the customer because the customer might fixate 
on a solution that is completely against your company’s best 
interests. Nonetheless, you must be prepared to discuss all of the 
options within your organization so that an appropriate solution 
can be proposed to the customer.

Sometimes you are the vendor and sometimes you are the 
customer. Try to keep that balance in mind when you are working 
through customer problems. Are you treating the customer the 
way you would want to be treated if you were in his shoes? Are 
you demanding something from your vendors that your company 
would not be willing to do?

Learn from your customers. Learn from your vendors. Listen to 
them and develop some empathy for their situation. In turn, give 
them better problem reports or teach them to give you better 
problem reports. Use all of the tools available—such as video, 
photos, sketches, graphs, raw data, and clear descriptions—to 
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avoid bad communication.  Make sure you share a common 
vocabulary. Publish what you know and ask good questions. Find 
the center of the problem and seek balance in your solutions.

Remember, customers are paying your salary. Are you giving 
them a fair deal? When you solve a problem for one customer, 
that person’s peers will often hear about it. Your success with 
one customer will cause other customers and some prospects to 
ask you to do the same for them.

Abusive Customers (or Vendors or Management)
Occasionally, you will run into an enterprise or individual in 
an organization who is simply abusive. Realizing that he is in 
a position of power, the person may be verbally intimidating. 
He may show no respect for the individuals trying to solve his 
problems.

Some expect absurd levels of service in exchange for too-low 
pricing.  Sometimes, these enterprises or individuals are in 
monopolistic or near-monopoly positions within their own 
market. Companies too weak and too desperate to say “no” will 
line up to get into the cash-flow stream of these companies.

You do not have to accept abusive treatment. You can tell the 
individual or organization that their behavior is not acceptable. 
You can find a new job or business if it bothers you too much.

Every day is a series of choices.  Sometimes, one choice (like 
walking away from a paying, yet abusive situation) might seem 
impossible.  The choice is still there; it’s the consequences of 
exercising that choice that make you claim you have no options. 
You are stuck between the proverbial rock and hard place. 

But you do have choices, even if you don’t like them.  Rest 
assured that there is indeed a special circle of hell reserved for 
those who abuse other human beings, whether those victims are 
customers, vendors, or employees.
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Know the Difference Between Customers, 
Prospects, and Suspects

A customer is a person or organization that is ready, willing, 
and able to purchase a good or service from your company for 
enough money to sustain your business.

A prospect is a person or organization that could become a 
customer at some time in the future.

A suspect is somebody who recently was or probably will be 
involved in a crime, very soon.

Know who pays your bills and keeps the lights 
on. 

	  Hint: Your customers pay your salary.

•	 You will get 80% of your income from 20% of your 
customers.

•	 Never treat anybody with disrespect.

•	 Don’t let people treat you with disrespect.
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Final Thoughts

A summary of the main points in this book follows at the end of 
this chapter. But more importantly, this is the chapter where 
my innermost thoughts can be shared openly and honestly.

This is not to say that I have been untruthful in the previous 
pages. Indeed, if you look there, you will find the real me exposed 
in many ways. Sometimes, though, I felt like I had to keep under 
control. A writer should not undermine his own position in his 
work.

If you have made it this far through the book, you deserve some 
straight talk. What follows is what I would say to you, person 
to person, were we sitting together in an excellent restaurant 
following a great feast.

I am troubled greatly by people who dive deeply into the religion 
of any problem-solving method. Please don’t do that. This book 
simply teaches an approach to solving problems that has worked 
well in my life and for many other folks with whom I have 
worked. I try to learn from the best.

For obvious reasons, quality systems and problem solving are 
closely coupled subjects. Therefore, much of the literature you 
will find about solving problems comes directly from quality 
or manufacturing quality groups. These folks are subjected to 
daily abuse in most corporations.  They are often tasked with 
cleaning up messes that the design and purchasing (sourcing) 
folks have created. Because quality teams are typically better at 
documenting and communicating their work, it stands to reason 
that the literature is filled with their problem-solving methods.

Everybody—design, marketing, sales, sourcing, production, field 
or customer support, and even management—needs to be able 
to solve problems effectively. They need to understand how to 
contribute to the problem-solving efforts of other people and how 
to lead an investigation to success.

Don’t get hung up on the methods. Don’t get so obsessed with the 
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steps and paperwork of one system that you ignore the deeper 
meaning of what that system is trying to lead you to find (even 
if you are failing to find it).  Quality systems like 8D (Ford’s 
eight-disciplines approach), the five whys (Toyota), A3 problem 
solving (summarize the problem on one A3 size sheet of paper), 
or Ishakawa fishbone diagrams have many devotees. 

You can brainstorm life and death on a whiteboard like the 
fictitious Dr. House, or you can write up a long-winded thesis 
on a trivial problem. But the fact is, your success will not be 
measured by slavish adherence to a particular method, format, 
or sequence of steps in solving problems. Your success will be 
measured in terms of time, money, and the results you delivered. 
Your success will be measured in the ratio of products shipped 
to products returned. Your success will be measured in whether 
the balance and center of your efforts helped other people or 
hurt them.

Not all problems are equal in size.  Some are tall and some are 
wide and a few are both.  Your success will be measured as the 
integral of the problems you solved divided by the integral of the 
problems you created.

Remember that your solutions should be bigger than the problems 
they solve, when measured in all dimensions. A medication that 
cures a non-fatal disease in half of the patients, but kills the 
other half of the patients is not really a good solution. An elegant 
user interface that looks great on a screen, but connects to a 
broken database is not going to help your customers.

I believe it is critically important that you become a leader who 
solves problems for other people—not just your own problems. 
If those people are customers, your success might also lead to 
wealth or recognition.  All problem solvers achieve a special 
satisfaction that comes from within.
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The people you can help to solve problems include the following:

●● Family
●● Friends
●● Neighbors and fellow employees
●● Citizens of your community
●● Citizens of your state (county or province)
●● Citizens of your country
●● Citizens of your world

As you can see, these represent ever-widening circles. People go 
from being insiders to outsiders. You are less directly related 
as you go down this list, but I hope that you can still imagine 
yourself in the shoes of those people who don’t look exactly like 
you.

Will the five questions discussed in these pages feed the poor? 
Will these methods stop hate or war or racism? Sorry, probably 
not. But you might solve some of these big human problems in 
your own way. 

You might relieve enough pressure from somebody’s daily life 
that they stop blaming the strangeness of other folks for their 
own misfortunes. You might brighten one child’s life just enough. 
You might spread knowledge instead of ignorance. You might 
share what you know instead of hoarding that knowledge and 
wisdom. You might make a friend instead of an enemy.

So as you seek success, fortune, fame, or satisfaction, be sure to 
seek balance. Be sure to find the center of the problem.

Now get back out there and go fix something.
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Sum of the Summaries: 

The Five Questions

1.	 What do you know? (Describe the problem.)

2.	 What are the rules? (Know the basic science behind the 
system.)

3.	 What don’t you know? (Outline the missing information.)

4.	 How can you find out the stuff you don’t know? (Do research 
and experiments.)

5.	 How do you know when you are ready to solve; or have 
already solved the problem? (Evaluate and verify your 
solution.)

The 5 C-words of successful debug:

1.	 Communication

2.	 Contemplation

3.	 Concentration

4.	 Confirmation

5.	 Communication

Write a problem statement that collects together 
this critical information:
1.	 What?

2.	 Which?

3.	 How Many?

4.	 When?

5.	 Where?

6.	 Who?

7.	 How? 

Clearly note items that are suspect. Watch out for false assumptions 
and avoid jumping to any conclusions this early in your investigation.
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Different settings create different communication 
problems.

1.	 Verbal Discussions

2.	 Conference Calls

3.	 Emails

Use these tools to improve clarity and 
understanding:

1.	 Photographs

2.	 Videos

3.	 Block Diagrams

Key Question: Has the system ever worked before? 
(What evidence do you have?)

Hints:

1.	 Listen to your customers.

2.	 Practice active listening.

3.	 Be sure you can write a clear description of how the system 
is supposed to work.

Overcome common barriers to clear communication

1.	 Start with an assumption that the person reporting the 
problem is intelligent and sincere.

2.	 Listen to what they are telling you without jumping to any 
conclusions.

3.	 Be very careful about jargon. Make sure you are both using 
the same words to mean the same things.

4.	 Just because you have never seen the problem does not 
mean that problem is not real.
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Methods for Better Communication

1.	 Use whiteboards (but in a limited way).

2.	 Convert your brainstorming to an electronic format.

3.	 Share photographs, video, or documents; any files you can 
easily store and transmit electronically.

4.	 Use simplified block diagrams.

5.	 Use Bug Tracking Software to organize your efforts

What are the rules?
1.	 Rules represent the basic science behind a system.

2.	 Many problems come from violating the most basic rules.

3.	 Constraints are special rules imposed by the goals of each 
project.

4.	 All projects include the four basic constraints of People, Time, 
Money, and Results.

What Don’t You Know?

•	 Brainstorm to create lists of things you don’t know (yet).

•	 Prioritize these items to make efficient use of your time.

•	 Do not fixate on any one item. This is jumping-to-a-conclusion.  
Such behavior is immensely damaging to a good debug effort.

•	 Include this list in your reports.  As you discover the answers 
to things you don’t know, you can move them into your list of 
things you do know.

•	 Don’t be afraid to add new items to the Things You Know and 
Things You Don’t Know lists as you gain knowledge about the 
problem.
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How Do you Find out the Stuff you don’t Know?
1.	 Derive knowledge from First Principles
2.	 Ask an Expert
3.	 Look it up on the web (DANGER!)
4.	 Look it up in a book or magazine
5.	 Observe the problem with your own senses

a.	 See it
b.	 Hear it
c.	 Smell it
d.	 Touch it
e.	 Taste it

6.	 Do some experiments or tests to prove an idea
7.	 Do some experiments to collect information

Experiments and Tests

1.	 Experiments can help disprove a specific idea.

2.	 Experiments rarely prove a theory, but can give you good 
evidence to support a theory.

3.	 Experiments can be done to collect lots of raw information.

4.	 Only change one variable at a time during any experiment. 

5.	 Try to predict the outcome of changes. When you have 
excellent agreement between prediction and outcome, you 
probably are gaining some insight into the problem.
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Divide and Conquer  (Debug by Division)
1.	 Verify the problem (output is bad).

2.	 Verify the input is good.

3.	 Start testing near the middle of the system. Keep a record of 
every test.

4.	 If the result is good, set that point as your new start and then 
pick a new middle.

5.	 If the result is bad, divide the system from the start point to 
your current point.

6.	 When no more division is possible: diagnose that specific 
node (stage or block) of the system.

7.	 Check for common subsystems that affect all nodes or stages.

8.	 Learn the first-check mantras for your skills.

Stimulus-Response Testing

1.	 Do normal environment testing first. Build some confidence 
that your system works.

2.	 Next stress-test your system over the expected operating 
ranges.

3.	 You can reduce your test burden if you prioritize your testing, 
automate your testing, and use specific point-testing instead 
of continuous-sweep testing.

4.	 Don’t forget to do appropriate Overstress Testing.

5.	 Always do all regulatory compliance testing.

6.	 Test early and test often.

7.	 View testing as part of design.
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If I Could See It, I Could Fix It

1.	 Your brain helps you convert images to understanding.

2.	 Sometimes, you just need to see the problem, and then it 
becomes obvious.

3.	 Use every tool available to help you see.

4.	 Sometimes we need to “see” with our mind’s eye, not our 
physical eyes.

5.	 Digital cameras with macro capability open up new 
possibilities for viewing small devices.

6.	 You can see things remotely using inexpensive cameras and 
software. 

Measurement and Instrumentation Concepts

1.	 Remember, if I could see it I could fix it.

2.	 Use instrumentation, measurements, and data-capture to 
see hidden information.

3.	 Watch out for false measurements.

4.	 Understand your measurement errors and tolerances.

5.	 Does your measurement affect the thing being measured? 
(Of course it does, but is that variation important?)

6.	 Understand where you have sensitive nodes in your design

7.	 Sometimes you need to tear something apart to really see 
what is going on inside it.
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Instrumenting Software
1.	 If I could see it, I could fix it. (Works for software too!)

2.	 Use static, extra memory locations to capture transient values.

3.	 Build “flight data recorders” into your code to let you see what 
happened just before a crash.

4.	 Follow the rules for diagnostic messages.

5.	 Pay attention to your diagnostic message bandwidth.

6.	 Initialize all exception vectors and have them point to useful 
diagnostic messages—even if you are sure they cannot happen.

7.	 Initialize all unused memory.

8.	 Use code validation tools.

9.	 Use code peer reviews.

10.	 The most difficult problems are usually solved by having 
the hardware and software teams working together—not 
separately.

Tools and Toolmaking

1.	 Practice, practice, practice until the tool becomes an extension 
of your mind.

2.	 Choose the best tools that your organization can afford and 
then make it work. Be creative and don’t blame your tools.

3.	 Think about making special tools when that is necessary, 
reasonable, and appropriate.

4.	 Calibrate your instruments and keep good records of your 
calibrations.

5.	 Understand accuracy and know the common sources of error 
in your measurements.
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Troubleshooting Complex Systems
•	 Rule 1: Don’t panic.

•	 Rule 2: Get organized.

•	 Rule 3: Be methodical.

•	 Rule 4: Record your work as you do it.

•	 Rule 5: Be persistent.

•	 Rule 6: Ask what changed.

•	 Rule 7: Localize problems. 

Debugging Intermittent Problems

1.	 Reproduce the problem.

2.	 Try to change the rate of failure.   Remember: Increasing 
failure rates can be just as informative as decreasing them.

3.	 Try to associate the failure with a variable or condition of the 
system, but watch out for superstition.

4.	 You can do parallel testing to increase the number of failures.  
This can be expensive, however.

5.	 Change only one variable at a time. (Sound familiar?)

6.	 Collect more information for each test.
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When You Think You Have a Solution, Heed These 
Warnings:

1.	 Correlation is not Causation.

2.	 Your theory of causation had better show good correlation in 
your experiments.

3.	 There might be more than one correct answer.

4.	 Undo your fix and check to see if the problem returns.

5.	 There can be multiple paths to good solutions. Your way is 
not the only way.

6.	 Never allow a defect or problem report to go by without 
documenting and fixing that problem.

Challenge Questions:

1.	 How did other people solve problems similar to this problem 
in the past? 

2.	 Good writers of design are good readers of other people’s 
designs. Are you a good reader?

3.	 Could it ever have worked that way?

4.	 Does it work that way now?

5.	 Are you suffering from optimism bias?

6.	 How complete are your checklists?

7.	 Are you doing big debug or little debug?
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A Great Idea Doesn’t Have to Work, to Be a Great 
Idea

1.	 Be careful of Grand Plans and Grand Ideas—it is too easy 
to fall in love with a solution that you later find does not or 
cannot work.

2.	 Watch out for multi-layer, or multiple-cause problems.

3.	 Understand your limitations.

4.	 Good documentation helps you succeed and protects you in 
failure.

Study Your Mistakes

1.	 Study your mistakes, since they will teach you more than 
your successes.

2.	 Once you have learned the lessons, put them into your 
checklists and then stop obsessing about them.

3.	 Management has an obligation to be honest about their 
contributions to problems.

4.	 Openly discuss mistakes without retribution.

5.	 Study the mistakes of others too.

6.	 Sometimes during debug, you will create new problems.

Business (and the Business of Solving Problems)

1.	 The reward for solving problems is the opportunity to solve 
more problems.   These new problems will be increasingly 
difficult. Don’t panic. Your skills should also be increasing.

2.	 The best organizations understand how to enhance your 
ability to solve problems. They actively remove roadblocks 
and help you when and where they are able.

3.	 Some organizations decide you need more managers.
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Know the Difference Between Customers, 
Prospects, and Suspects
A customer is a person or organization that is ready, willing, and 
able to purchase a good or service from your company for enough 
money to sustain your business.

A prospect is a person or organization that could become a 
customer at some time in the future.

A suspect is somebody who recently was or probably will be 
involved in a crime, very soon.

Know who pays your bills and keeps the lights on. 
	  Hint: Your customers pay your salary.

•	 You will get 80% of your income from 20% of your customers.

•	 Never treat anybody with disrespect.

•	 Don’t let people treat you with disrespect.
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Bibliography and Notes

This section can be used as a suggested reading list for engineers 
and their managers.  Not all books or references will be 
appropriate for every skill. I have added some comments related 
to the various sections, but all of these should be considered as 
only my opinion. Your mileage may vary and all other usual 
disclaimers apply. 

Troubleshooting or Engineering Failure stories
There are some great sites on the Web that offer collections of 
debugging (troubleshooting) stories or stories of engineering 
failures. I firmly believe that these stories improve engineering 
skills and that they should be required reading for all engineers 
and their managers. 

http://www.eetimes.com/electronics-blogs/4199254/
Engineering-Investigations-Blog

http://www.eetimes.com/electronics-blogs/other/4390231/
Engineering-disasters

http://www.edn.com/blog/Tales-from-the-Cube

http://www.designnews.com   

(Look for “Sherlock Ohms” blog section.  Also look for the 
“Designed by Monkeys” blog about bad designs that readers 
have encountered.)

The last entry on this page is a Web site maintained by me to 
support and promote engineering problem solving in general 
(and of course to promote this book).

http://www.prettygoodproblemsolver.com
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Great Books for any technical person or their 
manager

•	 The Checklist Manifesto: How to Get Things Right by Atul 
Gawande (Metropolitan, 2010) 

If you only can afford to buy one book, get The Checklist 
Manifesto, listed first above. Read it and embrace it. You 
will never regret it.

•	 The Mythical Man-Month: Essays on Software by Frederick P. 
Brooks (Addison-Wesley Professional, 1995)

•	 The Psychology of Computer Programming by Gerald M. 
Weinberg (Dorset House, 1998)

Great Books for Electrical or Electro-Mechanical 
Designers

•	 Troubleshooting Analog Circuits by Robert A. Pease 
(Butterworth-Heinemann, 1991)

•	 Hot Air Rises and Heat Sinks: Everything You Know about 
Cooling Electronics Is Wrong by Tony Kordyban (ASME Press, 
1998)

•	 More Hot Air by Tony Kordyban (ASME Press, 2005)

•	 High-Speed Digital Design: A Handbook of Black Magic by 
Howard Johnson and Martin Graham (Prentice Hall, 1993)

Here is one additional reference that is worth a look. Some folks 
might find the topic too dry or too peripheral to design, but this 
book earned a spot on my bookshelf:

•	 Engineering Documentation Control Handbook, Fourth 
Edition: Configuration Management and Product Lifecycle 
Management by Frank B. Watts (William Andrew, 2011)
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Engineering Failure
If you really want to understand good design, you have study 
failures, not successes.    I have encountered some really good 
books on this subject. Another source of similar information is to 
read the NASA reports on their shuttle accidents.

•	 To Engineer Is Human: The Role of Failure in Successful Design 
by Henry Petroski (Vintage, 1992)

•	 Set Phasers on Stun: And Other True Tales of Design, 
Technology, and Human Error by Steven Casey (Aegean 
Publishing Co., 1998)

•	 Air Disasters by Stanley Stewart (Ian Allan, 1986)

Professional Troubleshooting
There are some other folks out there who teach formal problem-
solving for engineers and managers. The gold-standard has to 
be Kepner-Tregoe.  I have never attended training by Kepner-
Tregoe, but I have read various works published by their 
organization.

•	 The Rational Manager: A Systematic Approach to Problem 
Solving and Decision Making by Charles Higgins Kepner and 
Benjamin B. Tregoe (McGraw-Hill, 1965)

http://www.kepner-tregoe.com

During my research, I encountered the book listed below by 
David Jonassen, who dives deeply into the question of how one 
should teach problem-solving to engineers.  He has published 
extensively on this topic.

•	 Learning to Solve Problems: An Instructional Design Guide by 
David H. Jonassen (Pfeiffer, 2004) 

Here is an excellent reference for Project Management:
•	 It Sounded Good When We Started: A Project Manager’s 

Guide to Working with People on Projects by Dwayne Phillips 
and Roy O’Bryan (John Wiley and Sons, Inc., 2004)
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After I finished writing the first draft of this book, my 
friend and former manager, Dr. Lauren Christopher told 
me that she was teaching a class from a book that seemed 
similar to a brief description she had read of my book.  I 
purchased a copy of the book she referenced only to find 
that David Agans’ book Debugging runs deeply parallel 
to the intent, style, and structure of what I have written.

I was both thrilled and stunned.  I was thrilled because 
it meant that I was probably describing something 
reasonable.  Stunned, because I had never seen anyone 
else commit such familiar ideas into writing.  I must 
therefore acknowledge that I am not the first to offer such 
notions.  Where Agans tells “war stories,” I mostly tell 
“fairy tales.” Where I say, “If I could see it, I could fix it,” 
Agans tells readers to stop thinking and start looking. 

I recommend that you treat Agans’ book and this one as 
bookends on your debugging shelf.  These books share 
some similar concepts, presented differently by different 
authors. I confess to really liking Agans’ book. A lot.

•	 Debugging: The 9 Indispensable Rules for Finding Even the 
Most Elusive Software and Hardware Problems by David J. 
Agans (AMACOM, 2006)

There exist some additional books and teachers of Problem 
Solving methods (Debugging, Troubleshooting or whichever 
term you prefer).  After much debate, I decided that you can use 
a search engine as well as anybody else, and since I had not read 
the full text of these references, I could neither recommend nor 
caution against them.
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Complexity Studies
In the course of researching the general topic of troubleshooting 
complex systems, I came across several fascinating books that 
in some way or another address complexity or complex systems. 
The most interesting aspect to me was the rising role of evolution 
as an observed mechanism in complex systems.  Here are a few 
books that discuss this topic:

•	 The Watchman’s Rattle: Thinking Our Way Out of Extinction 
by Rebecca D. Costa and Edward O. Wilson (Vanguard, 2010)

•	 Simplexity: Why Simple Things Become Complex (and How 
Complex Things Can Be Made Simple) by Jeffrey Kluger 
(Hyperion, 2008)

•	 The Origin of Wealth: The Radical Remaking of Economics and 
What It Means for Business and Society by Eric D. Beinhocker 
(Harvard Business School, 2007)

Philosophy
I had the odd experience of reading a book about Peter Drucker 
(management expert) the same week I read The Peter Principle.  
I came to the conclusion that both were teaching the same idea: 
the latter by making fun of how badly we do management and 
the former by explaining how we should be doing management.

•	 Inside Drucker’s Brain by Jeffrey A. Krames, (Portfolio, 2008)

•	 The Peter Principle: Why Things Always Go Wrong by 
Laurence J. Peter and Raymond Hull (William Morrow & 
Company, Inc., 1969)

•	 Zen and the Art of Motorcycle Maintenance: An Inquiry into 
Values by Robert M. Pirsig (HarperPerennial, 2005)

•	 The Last Lecture by Randy Pausch and Jeffrey Zaslow 
(Hyperion, 2008)

•	 The Dilbert Principle: A Cubicle’s-eye View of Bosses, 
Meetings, Management Fads & Other Workplace Afflictions 
by Scott Adams (HarperBusiness, 1997)



An Engineer’s Guide to Solving Problems

242

After you have worked as an engineer for a while, you begin to see 
the world in a different light.  I recently found and loved reading 
these next two books, but I suggest you wait until you have a few 
years of industry experience to increase your enjoyment of them:

•	 A Shortage of Engineers: A Novel by Robert Grossbach (St. 
Martin’s Press, 2001)

•	 Easy and Hard Ways Out: A Novel by Robert Grossbach 
(Harper’s Magazine Press, 1974)

Do you ever think about why you became an engineer? You 
might gain some insight from:

•	 Quiet: The Power of Introverts in a World That Can’t Stop 
Talking by Susan Cain (Crown, 2012)

Other Articles of Interest
Electrical engineers should read anything and everything they 
can find by by the late Bob Pease. Online, try:

 http://electronicdesign.com 
and then search for “Pease”.

Notes
Where direct quotations are cited by permission of the original 
publisher, they are referenced by footnotes within the appropriate 
chapter.

Any real company names, trademarks, tradenames, or 
servicemarks referenced in this text are property of their 
appropriate registered holder.

Several clip-art graphics are used in this book. The following 
images are licensed and copyright © GraphicsFactory.com.

●● Page 15: Barking dog graphic.
●● Page 78: Mouse, detective, and elephant graphics.
●● Page 142: Caveman and saber-tooth tiger graphics.
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study your mistakes, 201, 203, 205-206, 235
suspects, 218, 222, 236

T
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21, 23, 25, 27, 145, 197, 226
what are the rules, 2, 5, 10, 53-61, 226, 228
what don’t you know, 2, 5, 10, 63-66, 145, 226, 228
how can you find out the stuff you don’t know, 2, 10, 67, 226
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troubleshooting, 3, 6, 9, 76, 81, 145, 147, 149, 151, 153, 155, 157-
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